


免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
制作 艾镇南 椭圆的简单几何性质 1 第一课时 复习 1 椭圆的定义 到两定点F1 F2的距离之和为常数 大于 F1F2 的动点的轨迹叫做椭圆 2 椭圆的标准方程是 3 椭圆中a b c的关系是 a2 b2 c2 当焦点在X轴上时 当焦点在Y轴上时 a b a c b c不确定 情境设置 什么是解析几何 在数学中 用坐标法研究几何图形的知识形成了一门叫做解析几何的学科 因此可以说 解析几何是用代数方法研究几何问题的一门数学学科 研究曲线几何特征有何几何意义 研究曲线的几何性质可以从整体上把握曲线的形状 大小和位置 怎样来研究曲线的几何特征呢 通过对曲线方程的讨论来研究曲线的几何特征 二 椭圆简单的几何性质 a x a b y b知椭圆落在x a y b组成的矩形中 1 范围 椭圆的对称性 2 对称性 从图形上看 椭圆关于x轴 y轴 原点对称 从方程上看 1 把x换成 x方程不变 图象关于y轴对称 2 把y换成 y方程不变 图象关于x轴对称 3 把x换成 x 同时把y换成 y方程不变 图象关于原点成中心对称 3 椭圆的顶点 令x 0 得y 说明椭圆与y轴的交点 令y 0 得x 说明椭圆与x轴的交点 顶点 椭圆与它的对称轴的四个交点 叫做椭圆的顶点 长轴 短轴 线段A1A2 B1B2分别叫做椭圆的长轴和短轴 a b分别叫做椭圆的长半轴长和短半轴长 根据前面所学有关知识画出下列图形 1 2 A1 B1 A2 B2 B2 A2 B1 A1 4 椭圆的离心率e 刻画椭圆扁平程度的量 离心率 椭圆的焦距与长轴长的比 叫做椭圆的离心率 1 离心率的取值范围 2 离心率对椭圆形状的影响 0 e 1 1 e越接近1 c就越接近a 从而b就越小 椭圆就越扁2 e越接近0 c就越接近0 从而b就越大 椭圆就越圆 3 e与a b的关系 思考 当e 0时 曲线是什么 当e 1时曲线又是什么 离心率概念 椭圆焦距与长轴长之比 范围 椭圆变扁 直至成为极限位置线段 离心率 x a y b 关于x轴 y轴成轴对称 关于原点成中心对称 a 0 a 0 0 b 0 b c 0 c 0 长半轴长为a 短半轴长为b a b a2 b2 c2 x b y a b 0 b 0 0 a 0 a 0 c 0 c 例1 求椭圆16x2 25y2 400中x y的取值范围 以及长轴和短轴的长 焦点和顶点的坐标 离心率大小 解 把已知方程化成标准方程 这里a 5 b 4 所以c 3 椭圆的长轴和短轴长分别为2a 10和2b 8 两个焦点分别为F1 3 0 和F2 3 0 四个顶点分别为A1 5 0 A2 5 0 B1 0 4 B2 0 4 可利用对称性画图 描点法画图演示 A1 B1 A2 B2 利用对称性作图 画椭圆的图形 草图 画椭圆的图形 草图 A1 B1 A2 B2 练1 已知椭圆方程为9x2 25y2 225 它的长轴长是 短轴长是 焦距是 离心率等于 焦点坐标是 顶点坐标是 外切矩形的面积等于 10 6 8 60 解题的关键 1 将椭圆方程转化为标准方程明确a b 2 确定焦点的位置和长轴的位置 例2求适合下列条件的椭圆的标准方程 经过点P 3 0 Q 0 2 长轴长等于20 离心率3 5 一焦点将长轴分成 的两部分 且经过点 解 方法一 设方程为mx2 ny2 1 m 0 n 0 m n 将点的坐标方程 求出m 1 9 n 1 4 方法二 利用椭圆的几何性质 以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点 于是焦点在x轴上 且点P Q分别是椭圆长轴与短轴的一个端点 故a 3 b 2 所以椭圆的标准方程为 注 待定系数法求椭圆标准方程的步骤 定位 定量 或 或 练习 1 根据下列条件 求椭圆的标准方程 长轴长和短轴长分别为8和6 焦点在x轴上 长轴和短轴分别在y轴 x轴上 经过P 2 0 Q 0 3 两点 一焦点坐标为 3 0 一顶点坐标为 0 5 两顶点坐标为 0 6 且经过点 5 4 焦距是12 离心率是0 6 焦点在x轴上 2 已知椭圆的一个焦点为F 6 0 点B C是短轴的两端点 FBC是等边三角形 求这个椭圆的标准方程 小结 本节课我们学习了椭圆的几个简单几何性质 范围 对称性 顶点坐标 离心率等概念及其几何意义 了解了研究椭圆的几个基本量a b c e及顶点 焦点 对称中心及其相互之间的关系 这对我们解决椭圆中的相关问题有很大的帮助 给我们以后学习圆锥曲线其他的两种曲线扎实了基础 在解析几何的学习中 我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件 需要我们认识并熟练掌握数与形的联系 在本节课中 我们运用了几何性质 待定系数法来求解椭圆方程 在解题过程中 准确体现了函数与方程以及分类讨论的数学思想 练习 已知椭圆的离心率求m的值及椭圆的长轴和短轴的长 焦点坐标 顶点坐标 练习求下列椭圆的长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八级上册历史试卷及答案
- 公安局反恐演练协助人员劳动合同
- 智能停车设备管理系统开发协议
- 2025年造价工程师考试冲刺试卷 建设工程经济模拟试题及详细解析
- 电子商务平台的推广服务协议
- 2025年政府大院考试题及答案
- 2025年生物质能新能源汽车充电网络优化布局报告
- 2025年音乐教师考试试题及答案
- 企业行政文书写作与存档标准化流程
- 2025年小学音乐考试试题及答案
- PICC堵管原因与再通方法
- 标杆地产五星级酒店精装修标准
- 脑器质性精神障碍患者的护理查房
- (高清版)TDT 1013-2013 土地整治项目验收规程
- 初中数学分层作业设计举例-有理数
- 西方经济学简史
- 信息管理系统的设计与实现
- 新闻报道与舆论导向
- 局放实验操作规程
- 透明土实验技术的研究进展
- 戴海崎心理与教育测量第4版课后习题答案
评论
0/150
提交评论