高中数学 1.3.3 函数的最大(小)值与导数课件 新人教A版 选修22.ppt_第1页
高中数学 1.3.3 函数的最大(小)值与导数课件 新人教A版 选修22.ppt_第2页
高中数学 1.3.3 函数的最大(小)值与导数课件 新人教A版 选修22.ppt_第3页
高中数学 1.3.3 函数的最大(小)值与导数课件 新人教A版 选修22.ppt_第4页
高中数学 1.3.3 函数的最大(小)值与导数课件 新人教A版 选修22.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 3 3函数的最大 小 值与导数 自主学习新知突破 1 借助函数图象 直观地理解函数的最大值和最小值的概念 2 弄清函数最大值 最小值与极大值 极小值的区别与联系 理解和熟悉函数f x 必有最大值和最小值的充分条件 3 会用导数求在给定区间上函数的最大值 最小值 1 如图为y f x x a b 的图象 问题1 试说明y f x 的极值 提示1 f x1 f x3 为函数的极大值 f x2 f x4 为函数的极小值 问题2 你能说出y f x x a b 的最值吗 提示2 函数的最小值是f a f x2 f x4 中最小的 函数的最大值是f b f x1 f x3 中最大的 2 函数y g x y h x 在闭区间 a b 的图象都是一条连续不断的曲线 如图所示 问题 两函数的最值分别是什么 提示 y g x 的最大值为极大值 最小值为g a y h x 的最大值为h a 最小值为h b 一般地 如果在区间 a b 上函数y f x 的图象是一条连续不断的曲线 那么它必有 与 函数的最大 小 值 最大值 最小值 1 函数最值的理解 1 函数的最值是一个整体性的概念 函数极值是在局部上对函数值的比较 具有相对性 而函数的最值则是表示函数在整个定义域上的情况 是对整个区间上的函数值的比较 2 函数在一个闭区间上若存在最大值或最小值 则最大值或最小值只能各有一个 具有唯一性 而极大值和极小值可能多于一个 也可能没有 例如 常数函数就既没有极大值也没有极小值 3 极值只能在区间内取得 最值则可以在端点处取得 有极值的不一定有最值 有最值的也未必有极值 极值有可能成为最值 最值只要不在端点处取必定是极值 1 求函数y f x 在 a b 内的 2 将函数y f x 的 与 处的函数值f a f b 比较 其中最大的一个就是 最小的一个就是 求函数f x 在闭区间 a b 上的最值的步骤 极值 各极值 端点 最大值 最小值 2 求函数最值需注意的问题 1 求函数的最值 显然求极值是关键的一环 但仅仅是求最值 可用下面简化的方法求得 求出导数为零的点 比较这些点与端点处函数值的大小 就可求出函数的最大值和最小值 2 若函数在闭区间 a b 上连续单调 则最大 最小值在端点处取得 3 若连续函数f x 在开区间 a b 内只有一个极值点时 这个点的函数值必然是最值 例如在 上函数只有一个极值 那么这个极值也就是最值 1 函数f x 4x x4在x 1 2 上的最大值 最小值分别是 a f 1 与f 1 b f 1 与f 2 c f 1 与f 2 d f 2 与f 1 解析 f x 4 4x3 f x 0 即4 4x3 0 x1 f x 4x x4在x 1时取得极大值 且f 1 3 而f 1 5 f 2 8 f x 4x x4在 1 2 上的最大值为f 1 最小值为f 2 故选b 答案 b 2 函数f x 2x cosx在 上 a 无最值b 有极值c 有最大值d 有最小值解析 f x 2 sinx 0恒成立 所以f x 在 上单调递增 无极值 也无最值 答案 a 合作探究课堂互动 求函数的最值 求下列函数的最值 思路点拨 要求区间 a b 上函数的最值 只需求出函数在 a b 内的极值 最后与端点处函数值比较大小即可 1 f x 2x3 12x 导数法求函数最值要注意的问题 1 求f x 令f x 0 求出在 a b 内使导数为0的点 同时还要找出导数不存在的点 2 比较三类点处的函数值 导数不存在的点 导数为0的点及区间端点的函数值 其中最大者便是f x 在 a b 上的最大值 最小者便是f x 在 a b 上的最小值 特别提醒 比较极值与端点函数值的大小时 可以作差 作商或分类讨论 1 求下列各函数的最值 1 f x x4 2x2 3 x 3 2 2 f x x3 3x2 6x 2 x 1 1 解析 1 f x 4x3 4x 令f x 4x x 1 x 1 0得x 1 或x 0 或x 1 当x变化时 f x 及f x 的变化情况如下表 当x 3时 f x 取最小值 60 当x 1或x 1时 f x 取最大值4 2 f x 3x2 6x 6 3 x2 2x 2 3 x 1 2 3 f x 在 1 1 内恒大于0 f x 在 1 1 上为增函数 故x 1时 f x 最小值 12 x 1时 f x 最大值 2 即f x 的最小值为 12 最大值为2 已知函数的最值求参数 解决由函数的最值来确定参数问题的关键是利用函数的单调性确定某些极值就是函数的最值 同时由于系数a的符号对函数的单调性有直接的影响 其最值也受a的符号的影响 因此 需要进行分类讨论 本题是运用最值的定义 从逆向出发 由已知向未知转化 通过待定系数法 布列相应的方程 从而得出参数的值 2 已知函数f x ax3 6ax2 b在 1 2 上有最大值3 最小值 29 求a b的值 解析 依题意 显然a 0 因为f x 3ax2 12ax 3ax x 4 x 1 2 所以令f x 0 解得x1 0 x2 4 舍去 1 若a 0 当x变化时 f x f x 的变化情况如下表 由上表知 当x 0时 f x 取得最大值 所以f 0 b 3 又f 2 16a 3 f 1 7a 3 故f 1 f 2 所以当x 2时 f x 取得最小值 即 16a 3 29 a 2 与最值有关的恒成立问题 已知函数f x ax4lnx bx4 c x 0 在x 1处取得极值 3 c 其中a b c为常数 若对任意x 0 不等式f x 2c2恒成立 求c的取值范围 思路点拨 有关恒成立问题 一般是转化为求函数的最值问题 求解时要确定这个函数 看哪一个变量的范围已知 即函数是以已知范围的变量为自变量的函数 一般地 f x 恒成立 f x max f x 恒成立 f x min 3 已知函数f x x3 3x2 9x c 当x 2 6 时 f x 2 c 恒成立 求c的取值范围 解析 f x x3 3x2 9x c f x 3x2 6x 9 当x变化时 f x f x 随x的变化如下表 而f 2 c 2 f 6 c 54 当x 2 6 时 f x 的最大值为c 54 要使f x 54 当c 0时 c 54 2c c 18 c 18 54 此即为参数c的取值范围 求函数f x x3 3x2 9x 5 x 5 6 的最大值和最小值 错解 f x 3x2 6x 9 令f x 3x2 6x 9 0 解得x 1或x 3 当x变化时 f x 与f x 的变化情况如下表 从上表可知 函数f x 的最大值为10 最小值为 22 错因 错解的原因在于忽视闭区间端点的函数值 将f x 的各极值与函数端点值f a f b 比较 其中最大的一个就是最大值 最小的一个就是最小值 如果仅仅是求最值 还可将上面的办法简化 只需将所有可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论