




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菱形的性质与判定(一) 授课教师 田东中学 赵慧婷 一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。 其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。 再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:掌握菱形的定义;探索并掌握菱形是轴对称图形;探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学重点及难点:通过学生自主交流探讨总结出菱形的性质三、教学过程设计本节课设计了六个教学环节:活动一:课前准备;第二环节:设置情境,提出课题 ;第三环节:动手操作;第四环节:小组合作探究;第五环节:例题讲解;第六环节:随堂练习(抢答)。第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片,并制作平行四边形一章思维导图。2、教师准备菱形纸片,剪刀,上课前发给学生上课时使用。第二环节 设置情境 ,提出课题【教学内容】教师:平行四边形的角度保持不变,边怎样变化才能使其变成特殊的平行四边形呢?学生1:把一条边平移,使得一组邻边相等。教师:非常好。这就是我们今天学习的特殊的平行四边形-菱形。那你能根据你的描述,给菱形下个定义吗? 学生2:有一组邻边相等平行四边形叫做菱形。教师:同学们总结的很好,像这样,“一组邻边相等的平行四边形叫做菱形”。那么你能举例说明生活中有哪些菱形的例子吗?学生3:地砖的图案,中国结,伸缩衣架,吃的饼干形状等。教师:同学们说的非常好!第三环节猜想 、探究与证明 【教学内容】动手操作,剪纸。请同学们跟老师一起动手剪剪菱形好不好?跟老师一起操作(先对折,再对折,剪出一个直角三角形),并回答老师这样剪出来的图形就一定是菱形吗?学生:四边两组对边分别相等四边形是平行四边形,同时它们也能够保证邻边相等,那么它就一定是菱形。下面请小组交流合作完成:1、想一想教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。你能列举一些这样的性质吗? 学生:菱形的对边平行且相等,对角相等,对角线互相平分。教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。 学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。 教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质。对学生的结论,教师要及时评价,积极引导,激励学生。2、做一做教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段? 学生活动:分小组折纸探索教师的问题答案。组长组织,并汇总结果。教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论。学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学。师生结论:菱形是周对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直。菱形的四条边相等。 3、证明菱形性质教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严格的逻辑证明。教师活动:展示题目已知:如图1-1,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)ACBD.师生共析:菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了。因为菱形是平行四边形,所以点O是对角线AC与BD中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了。学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理。证明:(1)四边形ABCD是菱形,AB = CD, AD= BC (菱形的对边相等).又AB=ADAB=BC=CD=AD(2)AB=ADABD是等腰三角形又四边形ABCD是菱形OB=OD(菱形的对角线互相平分)在等腰三角形ABD中,OB=ODAOBD即ACBD教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象。第四环节性质应用与巩固 【教学内容】教师:通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题。教师活动:展示题目1、例1 如图1-2,在菱形ABCD中,对角线AC与BD相交于点O, BAD=60,BD=6,求菱形的边长AB和对角线AC的长。师生共析:因为菱形的邻边相等,一个内角是60,这样就可以得到等边ABD ,BD=6,菱形的边长也是6。菱形的对角线互相垂直,可以得到直角AOB;菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA的长度;再一次根据菱形的对角线互相平分,即AC=2OA,求出AC。解: 四边形ABCD是菱形 AB=AD(菱形的四条边都相等) ACBD(菱形的对角线互相垂直) OB=OD= BD = 6 =3(菱形的对角线互相平分) 在等腰三角形ABC中, BAD=60 ABD是等边三角形 AB=BD=6 在RtAOB中,由勾股定理,得OA2+OB2=AB2 师生共析:从图中可以知道AC与BD互相垂直,可以构成直角AOB,因为AB=5cm,AO=4cm,这样就可以运用勾股定理求出OB;又因为菱形的对角线互相平分,BD为OB 的两倍,这样就可以很方便的求出BD的数值了。 解: 四边形ABCD是菱形 ACBD(菱形的对角线互相垂直) 在RtAOB中,由勾股定理,得AO2+BO2=AB2 四边形ABCD是菱形BD=2BO=23=6(菱形的对角线互相平分) 所以,BD的长是6cm. 老师:请问根据这道题目你能求出菱形的面积吗?生:“底x高”“对角线乘积的一半” (教师板书推理) 第五环节课堂练习(抢答题)(详见课件内容)第六个环节 课堂小结本节课我们探讨了菱形的定义、性质 ,我们来共同总结一下:1、菱形的定义:一组邻边相等的平行四边形是菱形.2、菱形的性质:菱形是轴对称图形,对称轴是两条对角线所在的直线;菱形的四条边都相等;菱形的对角线互相垂直平分。3、菱形具有平行四边形的所有,应用菱形的性质可以进行计算和推理。四 课后布置作业:新课标 A本 菱形的性质一课时五 板书设计六 课后反思本节课的新颖之处就是导入的过程,我采取了运用思维导图复习,学生在课前做了平行四边形一章的思维导图,加深对平行四边形的性质的理解,也为本节的内容提供了良好的铺垫,基本上多数孩子都知道研究菱形也要从边,角,对角线,对称性四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球贸易CIF与FOB国际物流清关代理专项合同
- 2025年绿色建筑节能材料采购与供应链金融风险防控合同
- 2025年度城市有轨电车系统设备供应与安装维护全流程合同
- 2025年企业员工班车租赁补贴实施合同
- 2025年医药零售企业员工服务及绩效考核体系劳动合同
- 2025年度企业环保合规审查及行政复议代理服务合同
- 美容课件模板
- 第二章液体药剂三
- 2025年矿山无人作业技术报告:智能化开采模式下的设备管理与维护
- 2025年废弃矿井资源再利用与矿山废弃物资源化利用研究报告
- 血氧饱和度监测
- GB/T 23604-2024钛及钛合金产品力学性能试验取样方法
- 小学五年级家长会-主题班会
- 10kV线路施工应急预案
- 《植物细胞》教学课件
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
- 医学教材 肠内营养相关性腹泻的预防处置课件
- 新人教版七年级上册英语全册课件(2024年新版教材)
- 2024-2030年中国纳米烧结银市场深度调查与发展战略规划分析研究报告
- 2024年安徽省体育彩票管理中心招聘23人(亳州地区招2人)历年(高频重点提升专题训练)共500题附带答案详解
- JT-T-1223-2018落水人员主动报警定位终端技术要求
评论
0/150
提交评论