




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19 2一次函数 19 2 2一次函数 第2课时一次函数的图象和性质 1 一次函数y kx b k 0 的图象可以由直线y kx 个单位长度得到 一次函数y kx b也是 我们称它为 y kx b 2 一次函数y kx b k 0 当k 0时 y随x的增大而 当k 0时 y随x的增大而 平移 b 一条直线 直线 增大 减小 知识点1 一次函数的图象1 函数y x 1的图象是 d 2 若点 3 1 在一次函数y kx 2 k 0 的图象上 则k的值是 a 5b 4c 3d 1 d 3 2015 甘孜州 函数y x 2的图象不经过 a 第一象限b 第二象限c 第三象限d 第四象限知识点2 一次函数的图象与平移4 将函数y 3x的图象沿y轴向上平移2个单位长度后 所得图象对应的函数关系式为 a y 3x 2b y 3x 2c y 3 x 2 d y 3 x 2 5 直线y 3x 2沿y轴向下平移5个单位 则平移后直线与y轴的交点坐标为 6 将直线y 3x向左平移一个单位后 所得直线解析式为 b a 0 3 y 3x 3 c d 9 已知函数y 2m 1 x m 3 1 若函数图象经过原点 求m的值 2 若函数的图象平行直线y 3x 5 求m的值 3 若这个函数是一次函数 且y随x的增大而减小 求m的取值范围 a c 12 将一次函数y 3x 1的图象沿y轴向上平移3个单位后 得到的图象对应的函数关系式为 13 点a 1 y1 b 3 y2 是直线y kx b k 0 上的两点 则y1 y2 0 填 或 y 3x 2 14 已知直线y 2m 4 x m 3 求 1 当m为何值时 y随x的增大而增大 2 当m为何值时 图象与y轴的交点在x轴下方 3 当m为何值时 函数图象经过原点 4 当m为何值时 这条直线平行于直线y x 15 已知一次函数y kx b的图象如图 1 试确定k b符号 2 两点 2 m 3 n 在函数图象上 比较m n的大小 解 1 k 0 b 0 2 m n 16 如图 点b是直线y x 8在第一象限的一动点 a 6 0 设 aob的面积为s 1 写出s与x之间的函数关系式 并求出x的取值范围 2 画出s与x之间函数关系式的图象 3 aob的面积能等于30吗 为什么 解 1 s 3x 24 0 x 8 2 图象略 3 不能 因为s 30时 x 2 点b在第二象限 17 已知直线y 2x 3与x轴相交于点a 与y轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程招投标及合同管理考试题库答案
- 肺结核诊疗、药物选择与护理考核试题与答案
- 组织行为内审员考试权威解析试题及答案
- 2025年工业互联网平台自然语言处理技术在工业设备预测性维护中的应用案例报告
- 2025年成人继续教育线上学习模式创新与教育技术融合报告
- 基础强化浙江省温岭市中考数学真题分类(实数)汇编专题攻克试题(含答案解析)
- 2025年工业互联网平台计算机视觉缺陷检测在玻璃加工机械制造机械行业应用分析报告
- 解析卷-北师大版8年级数学上册期末试题附答案详解(突破训练)
- 押题宝典高校教师资格证之《高等教育法规》题库及答案详解(典优)
- 2025年大学教师学术交流与学术会议支持合同
- 银行的表内、表外、表表外业务
- 《寂静的春天》课件
- 石油化工行业历史沿革与发展展望
- 招租写字楼方案
- 组织工程与再生医学的前景
- 危险化学品(储存、生产、使用)企业安全风险辨识分级管控清单
- 医院收费窗口服务规范
- 初一开学第一课班会课件
- 幼儿园劳务分包合同范本
- 电网调度自动化系统调试报告模板
- 13.3 比热容(教学设计) 九年级物理全一册 (人教版)
评论
0/150
提交评论