




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009年MBA联考综合能力考试数学重点知识串讲2008-12第一讲 方程与不等式【知识点与典例分析】1. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。例:如已知关于的不等式的解集为,则关于的不等式的解集为_(答:)2. 一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:或或RRR例:如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)3. 对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?例:(1)对一切恒成立,则的取值范围是_(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域),4.一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么?(、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,再令和检查端点的情况例:如实系数方程的一根大于0且小于1,另一根大于1且小于2,则的取值范围是_(答:(,1)5.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。比如:例:(1)若关于的不等式的解集为,其中,则关于的不等式的解集为_(答:);(2)不等式对恒成立,则实数的取值范围是_(答:)。6常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、cR,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。7绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):例:解不等式(答:);(2)利用绝对值的定义;(3)数形结合;例:解不等式(答:)(4)两边平方:例:若不等式对恒成立,则实数的取值范围为_。(答:)8含绝对值不等式的性质:同号或有;异号或有.第二讲 数列问题1、 数列的概念:数列是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应函数的解析式。2.等差数列的有关概念:(1)等差数列的判断方法:定义法或。(2)等差数列的通项:或。例:(1)等差数列中,则通项(答:);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是_(答:)(3)等差数列的前和:,。例:数列 中,前n项和,则,(答:,);(4)等差中项:若成等差数列,则A叫做与的等差中项,且。【提醒】:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(公差为2)3.等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有。例:(1)等差数列中,则_(答:27);(2)在等差数列中,且,是其前项和,则( )A、都小于0,都大于0B、都小于0,都大于0C、都小于0,都大于0D、都小于0,都大于0 (答:B)(4) 若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列。例:等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。(答:225)(5)在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。例:(1)在等差数列中,S1122,则_(答:2);(2)项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31)(6)若等差数列、的前和分别为、,且,则.例:设与是两个等差数列,它们的前项和分别为和,若,那么_(答:)(7)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?例:(1)等差数列中,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,则使前n项和成立的最大正整数n是 (答:4006)4.等比数列的有关概念:(1)等比数列的判断方法:定义法,其中或。(2)等比数列的通项:或。(3)等比数列的前和:当时,;当时,。【特别提醒】:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。(4)等比中项:若成等比数列,那么A叫做与的等比中项。【提醒】:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为,(公比为);但偶数个数成等比时,不能设为,因公比不一定为正数,只有公比为正时才可如此设,且公比为。例:如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)5.等比数列的性质:(1)当时,则有,特别地,当时,则有.例:在等比数列中,公比q是整数,则=_(答:512);各项均为正数的等比数列中,若,则 (答:10)。(2) 若是等比数列,则、成等比数列;若成等比数列,则、成等比数列;若是等比数列,且公比,则数列 ,也是等比数列。例:在等比数列中,为其前n项和,若,则的值为_(答:40)(3) 当时,这里,但,这是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。例:若是等比数列,且,则 (答:1)(4)、如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。例:设数列的前项和为(), 关于数列有下列三个命题: 若,则既是等差数列又是等比数列; 若,则是等差数列; 若,则是等比数列。这些命题中,真命题的序号是 (答:)6.数列的通项的求法:公式法:等差数列通项公式;等比数列通项公式。例:已知数列试写出其一个通项公式:_(答:)已知(即)求,用作差法:。例:已知的前项和满足,求(答:);数列满足,求(答:)已知求,用作商法:。例:数列中,对所有的都有,则_(答:)若求用累加法:。例:已知数列满足,则=_(答:)已知求,用累乘法:。例:已知数列中,前项和,若,求(答:)已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求。例:已知,求(答:);已知,求(答:);(2)形如的递推数列都可以用倒数法求通项。例:已知,求(答:);已知数列满足=1,求(答:)【注意】:(1)用求数列的通项公式时,你注意到此等式成立的条件了吗?(,当时,);(2)一般地当已知条件中含有与的混合关系时,常需运用关系式,先将已知条件转化为只含或的关系式,然后再求解。7.数列求和的常用方法:(1)公式法:等差数列求和公式;等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;常用公式:;.(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。例:求:(答:)(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法)。(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:;,; ;.8. “分期付款”模型应用问题(1)这类应用题一般可转化为等差数列或等比数列问题。(2)利率问题:单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为,则期后本利和为:(等差数列问题);复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分期还清。如果每期利率为(按复利),那么每期等额还款元应满足:(等比数列问题)。第三讲 直线和圆1直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围。例:(1)直线的倾斜角的范围是_(答:);(2)过点的直线的倾斜角的范围值的范围是_(答:)2直线的斜率:(1)定义:倾斜角不是90的直线,它的倾斜角的正切值叫这条直线的斜率,即tan(90);倾斜角为90的直线没有斜率;(2)斜率公式:经过两点、的直线的斜率为;(3)应用:证明三点共线: 。例:(1) 两条直线钭率相等是这两条直线平行的_条件(答:既不充分也不必要);(2)实数满足 (),则的最大值、最小值分别为_(答:)3直线的方程:(1)点斜式:已知直线过点斜率为,则直线方程为,它不包括垂直于轴的直线。(2)斜截式:已知直线在轴上的截距为和斜率,则直线方程为,它不包括垂直于轴的直线。(3)两点式:已知直线经过、两点,则直线方程为,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在轴和轴上的截距为,则直线方程为,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成(A,B不同时为0)的形式。【提醒】:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。例:过点,且纵横截距的绝对值相等的直线共有_条(答:3)4设直线方程的一些常用技巧:(1)知直线纵截距,常设其方程为;(2)知直线横截距,常设其方程为(它不适用于斜率为0的直线);(3)知直线过点,当斜率存在时,常设其方程为,当斜率不存在时,则其方程为;(4)与直线平行的直线可表示为;(5)与直线垂直的直线可表示为.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。5点到直线的距离及两平行直线间的距离:(1)点到直线的距离;(2)两平行线间的距离为。6直线与直线的位置关系:(1)平行(斜率)且(在轴上截距);(2)相交;(3)重合且。【提醒】:(1) 、仅是两直线平行、相交、重合的充分不必要条件!为什么?(2)直线与直线垂直。例:(1)设直线和,当_时;当_时;当_时与相交;当_时与重合(答:1;3);(2)已知直线的方程为,则与平行,且过点(1,3)的直线方程是_(答:);(3)两条直线与相交于第一象限,则实数的取值范围是_(答:);7圆的方程:圆的标准方程:。圆的一般方程:,【特别提醒】:只有当时,方程才表示圆心为,半径为的圆。例:(1)圆心在直线上,且与两坐标轴均相切的圆的标准方程是_(答:或);(2)如果直线将圆:x2+y2-2x-4y=0平分,且不过第四象限,那么的斜率的取值范围是_(答:0,2);8直线与圆的位置关系:直线和圆有相交、相离、相切。可从代数和几何两个方面来判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):相交;相离;相切;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为,则相交;相离;相切。例:(1)若直线与圆切于点,则的值_(答:2);(2)直线被曲线所截得的弦长等于 (答:);9圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):已知两圆的圆心分别为,半径分别为,则(1)当时,两圆外离;(2)当时,两圆外切;(3)当时,两圆相交;(4)当时,两圆内切;(5)当时,两圆内含。第四讲 排列、组合1.排列数中、组合数中。(1)排列数公式 ;。 (2)组合数公式;规定,。(3)排列数、组合数的性质:;。2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事);分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的);有序排列,无序组合。例:(1)将5封信投入3个邮筒,不同的投法共有 种(答:);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合和中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)的一边AB上有4个点,另一边AC上有5个点,连同的顶点共10个点,以这些点为顶点,可以构成_个三角形(答:90);(6)用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)是集合到集合的映射,且,则不同的映射共有 个(答:7)(9)满足的集合A、B、C共有 组(答:)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。例:某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_种(答:300);某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_种(答:100);用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_个(答:156);某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_(答:6);四个不同的小球全部放入编号为1、2、3、4的四个盒中。恰有两个空盒的放法有_种;甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有_种(答:84;96);设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的5个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有_种(答:31)(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。例:在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(1,2),(2,1)可以确定三角形的个数为_(答:15)。(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。例:把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_(答:2880);某人射击枪,命中枪,枪命中中恰好有枪连在一起的情况的不同种数为_(答:20);把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是_(答:144)(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。例:3人坐在一排八个座位上,若每人的左右两边都有空位,则不同的坐法种数有_种(答:24);某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同的插法种数为_(答:42)。(5)多排问题单排法。例:若2n个学生排成一排的排法数为x,这2 n个学生排成前后两排,每排各n个学生的排法数为y,则x,y的大小关系为_(答:相等);(6)多元问题分类法。例:某化工厂实验生产中需依次投入2种化工原料,现有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放. 那么不同的实验方案共有_种(答:15);某公司新招聘进8名员工,平均分给下属的甲、乙两个部门.其中两名英语翻译人员不能同给一个部门;另三名电脑编程人员也不能同给一个部门,则不同的分配方案有_种(答:36);9名翻译中,6个懂英语,4个懂日语,从中选拨5人参加外事活动,要求其中3人担任英语翻译,选拨的方法有_种(答:90);(7)有序问题组合法。例:书架上有3本不同的书,如果保持这些书的相对顺序不便,再放上2本不同的书,有 种不同的放法(答:20);百米决赛有6名运动A、B、C、D、E、F参赛,每个运动员的速度都不同,则运动员A比运动员F先到终点的比赛结果共有_种(答:360);学号为1,2,3,4的四名学生的考试成绩且满足,则这四位同学考试成绩的所有可能情况有_种(答:15);设集合,对任意,有,则映射的个数是_(答:);如果一个三位正整数形如“”满足,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为_(答:240);(8)选取问题先选后排法。例:某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只测试,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时,被发现的不同情况种数是_(答:576)。(9)至多至少问题间接法。例:从7名男同学和5名女同学中选出5人,至少有2名女同学当选的选法有_种(答:596)(10)相同元素分组可采用隔板法。例:10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36;15);某运输公司有7个车队,每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同的抽法有多少种?(答:84)4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n组问题别忘除以n!。例:4名医生和6名护士组成一个医疗小组,若把他们分配到4所学校去为学生体检,每所学校需要一名医生和至少一名护士的不同选派方法有_种(答:37440);第五讲 概率随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0;2.等可能事件的概率(古典概率): P(A)=。理解这里m、的意义。例:(1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是_(答:);(2)设10件产品中有4件次品,6件正品,求下列事件的概率:从中任取2件都是次品;从中任取5件恰有2件次品;从中有放回地任取3件至少有2件次品;从中依次取5件恰有2件次品。(答:;) 3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)P(A)+P(B)。例:(1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:);(2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)_(答:0.51);4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B);P()=1P(A);5、独立事件:(事件A、B的发生相互独立,互不影响)P(AB)P(A) P(B) 。【提醒】(1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件;(2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1P(AB)1P(A)P(B);(3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1P()1P()P()。例:设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是_(答:);某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB13-T 6036-2024 北斗+5G一体化融合位置服务通.用规范
- 预付款委托担保合同模板(适用于餐饮服务)
- 高端酒店SPA服务人员聘用合同及操作规范
- 基于碳汇项目的集体林地承包与生态补偿合同
- 2025年妇产科学妇女生殖健康综合评估答案及解析
- 产业转移园区建设2025年社会稳定风险评估与风险评估技术应用案例分析报告
- 交通运输行业节能减排与能源结构调整研究
- 心理咨询速记保密协议与个人隐私保护合同
- 首付比例明确型酒店住宿首付款合同范本模板
- 民航机场跑道工程预付款支付与施工进度合同范本
- 模具师转正述职报告
- THEBQIA 203-2023 药用中硼硅玻璃管
- 关键工序卡控管理实施细则
- 仪表电气专业培训课件
- 路政巡查培训课件
- 《甲状腺危象》课件
- 食管胃底静脉曲张及其破裂出血演示课件
- 初二家长学堂讲座课件(怎样和青春期的孩子相处)
- 专业化妆师色彩搭配培训课件
- “守纪律、讲规矩”党课课件详解
- 铭记历史缅怀先烈,珍爱和平开创未来课件
评论
0/150
提交评论