高考数学试题汇编:第章直线、平面、简单几何体第节简单的几何体与球.doc_第1页
高考数学试题汇编:第章直线、平面、简单几何体第节简单的几何体与球.doc_第2页
高考数学试题汇编:第章直线、平面、简单几何体第节简单的几何体与球.doc_第3页
高考数学试题汇编:第章直线、平面、简单几何体第节简单的几何体与球.doc_第4页
高考数学试题汇编:第章直线、平面、简单几何体第节简单的几何体与球.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章 直线、平面、简单几何体四 简单的几何体与球【考点阐述】多面体正多面体棱柱棱锥球【考试要求】(8)了解多面体、凸多面体的概念了解正多面体的概念(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图(10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图。(11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式【考题分类】(一)选择题(共12题)1.(北京卷理8)如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,D(,大于零),则四面体PE的体积()与,都有关 ()与有关,与,无关()与有关,与,无关 ()与有关,与,无关【答案】D解析:这道题目延续了北京高考近年8,14,20的风格,即在变化中寻找不变,从图中可以分析出,的面积永远不变,为面面积的,而当点变化时,它到面的距离是变化的,因此会导致四面体体积的变化。2.(北京卷文8)如图,正方体的棱长为2,动点E、F在棱上。点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,E=y(x,y大于零),则三棱锥P-EFQ的体积:(A)与x,y都有关; (B)与x,y都无关;(C)与x有关,与y无关; (D)与y有关,与x无关;3.(福建卷理6)如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且,则下列结论中不正确的是( )A. B.四边形是矩形 C. 是棱柱 D. 是棱台【答案】D【解析】因为,所以,又平面,所以平面,又平面,平面平面=,所以,故,所以选项A、C正确;因为平面,所以平面,又平面, 故,所以选项B也正确,故选D。【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力。4.(江西卷理10)过正方体的顶点A作直线L,使L与棱,所成的角都相等,这样的直线L可以作A.1条 B.2条 C.3条 D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。 5.(江西卷文11)如图,M是正方体的棱的中点,给出下列命题过M点有且只有一条直线与直线、都相交;过M点有且只有一条直线与直线、都垂直;过M点有且只有一个平面与直线、都相交;过M点有且只有一个平面与直线、都平行. 其中真命题是:A B C D【答案】C【解析】考查立体几何图形中相交平行垂直性质6.(辽宁卷理12)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是 (A)(0,) (B)(1,) (C) (,) (D) (0,)7.(辽宁卷文11)已知是球表面上的点,则球的表面积等于(A)4 (B)3 (C)2 (D)解析:选A.由已知,球的直径为,表面积为8.(全国卷理12文12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A) (B) (C) (D) 【答案】.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,故.9.(全国新卷理10)设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D) 【答案】B 解析:如图,P为三棱柱底面中心,O为球心,易知,所以球的半径满足:,故10.(全国新卷文7)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(A)3a2 (B)6a2 (C)12a2 (D)24a2【答案】B 解析:根据题意球的半径满足,所以11(全国卷理9)已知正四棱锥中,那么当该棱锥的体积最大时,它的高为(A)1 (B)(C)2 (D)3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a,则高所以体积,设,则,当y取最值时,解得a=0或a=4时,体积最大,此时,故选C.12.(四川卷理11文12)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是(A) (B) (C) (D)解析:由已知,AB2R,BCR,故tanBACcosBAC连结OM,则OAM为等腰三角形AM2AOcosBAC,同理AN,且MNCD而ACR,CDR故MN:CDAN:ACMN,连结OM、ON,有OMONR于是cosMON所以M、N两点间的球面距离是答案:A(二)填空题(共8题)1.(湖北卷理13文14)圆柱形容器内部盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm【答案】4【解析】设球半径为r,则由可得,解得r=4.2.(江西卷理16)如图,在三棱锥中,三条棱,两两垂直,且,分别经过三条棱,作一个截面平分三棱锥的体积,截面面积依次为,则,的大小关系为。【答案】 【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得。3.(江西卷文16)长方体的顶点均在同一个球面上,则,两点间的球面距离为 .【答案】【解析】考查球面距离,可先利用长方体三边长求出球半径,在三角形中求出球心角,再利用球面距离公式得出答案4.(全国卷理16文16)已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,若,则两圆圆心的距离【答案】3 【命题意图】本试题主要考查球的截面圆的性质,解三角形问题.【解析】设E为AB的中点,则O,E,M,N四点共面,如图,所以,由球的截面性质,有,所以与全等,所以MN被OE垂直平分,在直角三角形中,由面积相等,可得,5.(上海卷理12)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为 解析:翻折后的几何体为底面边长为4,侧棱长为的正三棱锥,高为所以该四面体的体积为6.(上海卷文6).已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是。解析:考查棱锥体积公式7.(上海春卷10)各棱长为1的正四棱锥的体积V=_。答案:解析:由题知斜高,则,故。8.(上海春卷13) 在右图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S=_cm2。答案:解析:将侧面展开可得。(三)解答题(共3题)1.(上海卷理21)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线与所在异面直线所成角的大小(结果用反三角函数表示)解析:2.(上海卷文21)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素).3.(上海春卷21)已知地球半径约为6371千

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论