高考数学二轮复习 专题七 概率与统计 7.3 随机变量及其分布课件 理.ppt_第1页
高考数学二轮复习 专题七 概率与统计 7.3 随机变量及其分布课件 理.ppt_第2页
高考数学二轮复习 专题七 概率与统计 7.3 随机变量及其分布课件 理.ppt_第3页
高考数学二轮复习 专题七 概率与统计 7.3 随机变量及其分布课件 理.ppt_第4页
高考数学二轮复习 专题七 概率与统计 7.3 随机变量及其分布课件 理.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7 3随机变量及其分布 2 3 命题热点一 命题热点二 命题热点三 命题热点四 条件概率与相互独立事件的概率 思考 如何求事件的条件概率 判断相互独立事件的常用方法有哪些 例1某公司为了解用户对其产品的满意度 从a b两地区分别随机调查了20个用户 得到用户对产品的满意度评分如下 a地区 6273819295857464537678869566977888827689b地区 7383625191465373648293486581745654766579 4 命题热点一 命题热点二 命题热点三 命题热点四 1 根据两组数据完成两地区用户满意度评分的茎叶图 并通过茎叶图比较两地区满意度评分的平均值及分散程度 不要求计算出具体值 给出结论即可 5 命题热点一 命题热点二 命题热点三 命题热点四 2 根据用户满意度评分 将用户的满意度从低到高分为三个等级 记事件c a地区用户的满意度等级高于b地区用户的满意度等级 假设两地区用户的满意度评价结果相互独立 根据所给数据 以事件发生的频率作为相应事件发生的概率 求c的概率 6 命题热点一 命题热点二 命题热点三 命题热点四 解 1 两地区用户满意度评分的茎叶图如下 通过茎叶图可以看出 a地区用户满意度评分的平均值高于b地区用户满意度评分的平均值 a地区用户满意度评分比较集中 b地区用户满意度评分比较分散 7 命题热点一 命题热点二 命题热点三 命题热点四 2 记ca1表示事件 a地区用户的满意度等级为满意或非常满意 ca2表示事件 a地区用户的满意度等级为非常满意 cb1表示事件 b地区用户的满意度等级为不满意 cb2表示事件 b地区用户的满意度等级为满意 则ca1与cb1独立 ca2与cb2独立 cb1与cb2互斥 c cb1ca1 cb2ca2 p c p cb1ca1 cb2ca2 p cb1ca1 p cb2ca2 p cb1 p ca1 p cb2 p ca2 8 命题热点一 命题热点二 命题热点三 命题热点四 题后反思1 条件概率的两种求解方法 2 判断相互独立事件的三种常用方法 1 利用定义 事件a b相互独立 p ab p a p b 3 具体背景下 有放回地摸球 每次摸球的结果是相互独立的 当产品数量很大时 不放回抽样也可近似看作独立重复试验 9 命题热点一 命题热点二 命题热点三 命题热点四 对点训练1 1 从1 2 3 4 5中任取两个不同的数 事件a为 取到的两个数之和为偶数 事件b为 取到的两个数均为偶数 则p b a 答案 解析 10 命题热点一 命题热点二 命题热点三 命题热点四 2 甲 乙两个实习生每人加工一个零件 加工的零件为一等品的概率分别为 加工的两个零件是否为一等品相互独立 则这两个零件中恰有一个一等品的概率为 答案 解析 11 命题热点一 命题热点二 命题热点三 命题热点四 离散型随机变量及其分布列 思考 如何求离散型随机变量及其分布列 例2 2017全国 理18 某超市计划按月订购一种酸奶 每天进货量相同 进货成本每瓶4元 售价每瓶6元 未售出的酸奶降价处理 以每瓶2元的价格当天全部处理完 根据往年销售经验 每天需求量与当天最高气温 单位 有关 如果最高气温不低于25 需求量为500瓶 如果最高气温位于区间 20 25 需求量为300瓶 如果最高气温低于20 需求量为200瓶 为了确定六月份的订购计划 统计了前三年六月份各天的最高气温数据 得下面的频数分布表 12 命题热点一 命题热点二 命题热点三 命题热点四 以最高气温位于各区间的频率代替最高气温位于该区间的概率 1 求六月份这种酸奶一天的需求量x 单位 瓶 的分布列 2 设六月份一天销售这种酸奶的利润为y 单位 元 当六月份这种酸奶一天的进货量n 单位 瓶 为多少时 y的数学期望达到最大值 13 命题热点一 命题热点二 命题热点三 命题热点四 2 由题意知 这种酸奶一天的需求量至多为500 至少为200 因此只需考虑200 n 500 当300 n 500时 若最高气温不低于25 则y 6n 4n 2n 若最高气温位于区间 20 25 则y 6 300 2 n 300 4n 1200 2n 若最高气温低于20 则y 6 200 2 n 200 4n 800 2n 因此e y 2n 0 4 1200 2n 0 4 800 2n 0 2 640 0 4n 14 命题热点一 命题热点二 命题热点三 命题热点四 当200 n 300时 若最高气温不低于20 则y 6n 4n 2n 若最高气温低于20 则y 6 200 2 n 200 4n 800 2n 因此e y 2n 0 4 0 4 800 2n 0 2 160 1 2n 所以n 300时 y的数学期望达到最大值 最大值为520元 15 命题热点一 命题热点二 命题热点三 命题热点四 题后反思求离散型随机变量的分布列 首先要根据具体情况确定x的取值情况 然后利用排列 组合与概率知识求出x取各个值的概率 16 命题热点一 命题热点二 命题热点三 命题热点四 对点训练2 2017天津 理16 从甲地到乙地要经过3个十字路口 设各路口信号灯工作相互独立 且在各路口遇到红灯的概率分别为 1 记x表示一辆车从甲地到乙地遇到红灯的个数 求随机变量x的分布列和数学期望 2 若有2辆车独立地从甲地到乙地 求这2辆车共遇到1个红灯的概率 17 命题热点一 命题热点二 命题热点三 命题热点四 18 命题热点一 命题热点二 命题热点三 命题热点四 2 设y表示第一辆车遇到红灯的个数 z表示第二辆车遇到红灯的个数 则所求事件的概率为p y z 1 p y 0 z 1 p y 1 z 0 p y 0 p z 1 p y 1 p z 0 19 命题热点一 命题热点二 命题热点三 命题热点四 二项分布与正态分布 思考 应用独立重复试验概率公式应满足怎样的条件 例3乒乓球单打比赛在甲 乙两名运动员间进行 比赛采用7局4胜制 即先胜4局者获胜 比赛结束 假设两人在每一局比赛中获胜的可能性相同 1 求甲以4比1获胜的概率 2 求乙获胜且比赛局数多于5局的概率 3 求比赛局数的分布列 20 命题热点一 命题热点二 命题热点三 命题热点四 21 命题热点一 命题热点二 命题热点三 命题热点四 22 命题热点一 命题热点二 命题热点三 命题热点四 题后反思利用独立重复试验概率公式可以简化求概率的过程 但需要注意检验该概率模型是否满足公式p x k pk 1 p n k的三个条件 1 在一次试验中某事件a发生的概率是一个常数p 2 n次试验不仅是在完全相同的情况下进行的重复试验 而且各次试验的结果是相互独立的 3 该公式表示n次试验中事件a恰好发生了k次的概率 23 命题热点一 命题热点二 命题热点三 命题热点四 对点训练3 2017全国 理19改编 为了监控某种零件的一条生产线的生产过程 检验员每天从该生产线上随机抽取16个零件 并测量其尺寸 单位 cm 根据长期生产经验 可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布n 2 1 假设生产状态正常 记x表示一天内抽取的16个零件中其尺寸在 3 3 之外的零件数 求p x 1 及x的数学期望 2 一天内抽检零件中 如果出现了尺寸在 3 3 之外的零件 就认为这条生产线在这一天的生产过程可能出现了异常情况 需对当天的生产过程进行检查 24 命题热点一 命题热点二 命题热点三 命题热点四 25 命题热点一 命题热点二 命题热点三 命题热点四 26 命题热点一 命题热点二 命题热点三 命题热点四 解 1 抽取的一个零件的尺寸在 3 3 之内的概率为0 9973 从而零件的尺寸在 3 3 之外的概率为0 0027 故x b 16 0 0027 因此p x 1 1 p x 0 1 0 997316 0 0423 x的数学期望为e x 16 0 0027 0 0432 2 如果生产状态正常 一个零件尺寸在 3 3 之外的概率只有0 0027 一天内抽取的16个零件中 出现尺寸在 3 3 之外的零件的概率只有0 0423 发生的概率很小 因此一旦发生这种情况 就有理由认为这条生产线在这一天的生产过程可能出现了异常情况 需对当天的生产过程进行检查 可见上述监控生产过程的方法是合理的 27 命题热点一 命题热点二 命题热点三 命题热点四 28 命题热点一 命题热点二 命题热点三 命题热点四 离散型随机变量的分布列 均值与方差 思考 求离散型随机变量的均值与方差的基本方法有哪些 例4 2017北京 理17 为了研究一种新药的疗效 选100名患者随机分成两组 每组各50名 一组服药 另一组不服药 一段时间后 记录了两组患者的生理指标x和y的数据 并制成下图 其中 表示服药者 表示未服药者 29 命题热点一 命题热点二 命题热点三 命题热点四 1 从服药的50名患者中随机选出一人 求此人指标y的值小于60的概率 2 从图中a b c d四人中随机选出两人 记 为选出的两人中指标x的值大于1 7的人数 求 的分布列和数学期望e 3 试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小 只需写出结论 30 命题热点一 命题热点二 命题热点三 命题热点四 31 命题热点一 命题热点二 命题热点三 命题热点四 题后反思求离散型随机变量的均值与方差的基本方法有 1 已知随机变量的分布列求它的均值 方差和标准差 可直接按定义 公式 求解 2 已知随机变量x的均值 方差 求x的线性函数y ax b的均值 方差 可直接用均值 方差的性质求解 即e ax b ae x b d ax b a2d x a b为常数 3 如能分析所给随机变量服从常用的分布 可直接利用它们的均值 方差公式求解 即若x服从两点分布 则e x p d x p 1 p 若x b n p 则e x np d x np 1 p 32 命题热点一 命题热点二 命题热点三 命题热点四 对点训练4某花店每天以每枝5元的价格从农场购进若干枝玫瑰花 然后以每枝10元的价格出售 如果当天卖不完 剩下的玫瑰花作垃圾处理 1 若花店一天购进16枝玫瑰花 求当天的利润y 单位 元 关于当天需求量n 单位 枝 n n 的函数解析式 2 花店记录了100天玫瑰花的日需求量 单位 枝 整理得下表 33 命题热点一 命题热点二 命题热点三 命题热点四 以100天记录的各需求量的频率作为各需求量发生的概率 若花店一天购进16枝玫瑰花 x表示当天的利润 单位 元 求x的分布列 数学期望及方差 若花店计划一天购进16枝或17枝玫瑰花 你认为应购进16枝还是17枝 请说明理由 解 1 当日需求量n 16时 利润y 80 当日需求量n 16时 利润y 10n 80 所以y关于n的函数解析式为 34 命题热点一 命题热点二 命题热点三 命题热点四 2 x可能的取值为60 70 80 并且p x 60 0 1 p x 70 0 2 p x 80 0 7 x的分布列为x的数学期望为e x 60 0 1 70 0 2 80 0 7 76 x的方差为d x 60 76 2 0 1 70 76 2 0 2 80 76 2 0 7 44 35 命题热点一 命题热点二 命题热点三 命题热点四 答案一 花店一天应购进16枝玫瑰花 理由如下 若花店一天购进17枝玫瑰花 y表示当天的利润 单位 元 那么y的分布列为 y的数学期望为e y 55 0 1 65 0 2 75 0 16 85 0 54 76 4 y的方差为d y 55 76 4 2 0 1 65 76 4 2 0 2 75 76 4 2 0 16 85 76 4 2 0 54 112 04 由以上的计算结果可以看出 d x d y 即购进16枝玫瑰花时利润波动相对较小 另外 虽然e x e y 但两者相差不大 故花店一天应购进16枝玫瑰花 36 命题热点一 命题热点二 命题热点三 命题热点四 答案二 花店一天应购进17枝玫瑰花 理由如下 若花店一天购进17枝玫瑰花 y表示当天的利润 单位 元 那么y的分布列为y的数学期望为e y 55 0 1 65 0 2 75 0 16 85 0 54 76 4 由以上的计算结果可以看出 e x e y 即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润 故花店一天应购进17枝玫瑰花 37 规律总结 拓展演练 1 对于离散型随机变量 它的分布列指出了随机变量x的取值范围以及取这些值的概率 2 古典概型中 在a发生的条件下b发生的条件概率公式为3 相互独立事件与互斥事件的区别 相互独立事件是指两个事件发生的概率互不影响 计算公式为p ab p a p b 互斥事件是指在同一试验中 两个事件不会同时发生 计算公式为p a b p a p b 4 对于二项分布 如果在一次试验中某事件发生的概率是p 那么在n次独立重复试验中这个事件恰好发生k次的概率是p x k pkqn k 其中k 0 1 n q 1 p 38 规律总结 拓展演练 5 若x服从正态分布 即x n 2 要充分利用正态曲线关于直线x 对称和正态曲线与x轴之间的面积为1 6 求离散型随机变量的均值与方差的三种基本方法 1 已知随机变量的分布列可直接按定义 公式 求解 2 已知随机变量x的均值 方差 求y ax b的均值 方差可直接用均值 方差的性质求解 3 若随机变量服从常用的分布 可直接利用常用分布的均值 方差公式求解 39 规律总结 拓展演练 1 投篮测试中 每人投3次 至少投中2次才能通过测试 已知某同学每次投篮投中的概率为0 6 且各次投篮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论