2018中考数学题型专项研究12讲:2018中考数学题型专项研究第2讲:方程(组)的解法_第1页
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第2讲:方程(组)的解法_第2页
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第2讲:方程(组)的解法_第3页
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第2讲:方程(组)的解法_第4页
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第2讲:方程(组)的解法_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

更多资料见微信公众号:数学第六感;小编微信:AA-teacher第2讲方程(组)的解法1解一元一次方程2解二元一次方程组3解一元二次方程4解分式方程1去分母时,容易出现漏项或者是两边所乘的不是最简公分母2去括号时,如果括号前是负因数,容易出现部分变号错误3移项时,对“被移动的项”理解错误,导致该变号的不变,不该变号的变了号4化系数为1时,两边同时除以未知数的系数,容易把该系数写到分子上消元:代入消元、加减消元降次:直接开方、因式分解近几年直接考查解方程(组)题目较少,但方程(组)是解决实际问题的有效工具,所以能够准确解方程(组)就显得尤为重要1一元一次方程的解法是解方程(组)的基础,而这类方程的解法又分为两类:移项、合并同类项、化系数为12一元二次方程的解法较多,所以要掌握各类方法的特征:(1)因式分解法较为常用(判别式能够开方开尽的基本可以进行因式分解),最终要整理为乘积为0的形式只有二次项和一次项的通常考虑提公因式;只有二次项和常数项的通常考虑平方差公式;暂时无法分解因式时可以先考虑打开括号,整理后再做观察(2)直接开平方法,能够直接实现降次目的,但比较局限,只针对能够整理成完全平方式等于非负数的题型(3)配方法的目的是实现直接开平方;配方时要首先化二次项系数为1,再在方程两边同时加上一次项系数一半的平方(4)求根公式法较为通用,只要b24ac0,均可把a,b,c代入x求解应用此法首先要把方程整理为ax2bxc0(a0)的形式3解分式方程目标是化分式方程为整式方程,首先要找到各分母的最简公分母,其次不要出现漏项,最后一定要记得检验求得的根是否是增根4解二元一次方程组的目标是消元,代入消元法是通用法,但通常只针对其中一个未知数的系数较为简单时,否则会导致计算困难;加减消元法关键看相同未知数的系数特征决定,要注意两式加减时的符号问题【典例解析】【例题1】(2017湖南岳阳)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【分析】设这批书共有3x本,根据每包书的数目相等即可得出关于x的一元一次方程,解之即可得出结论【解答】解:设这批书共有3x本,根据题意得: =,解得:x=500,3x=1500答:这批书共有500本【点评】本题考查了一元一次方程的应用,根据每包书的数目相等列出关于x的一元一次方程是解题的关键【例题2】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案【考点】B7:分式方程的应用;95:二元一次方程的应用【分析】(1)首先设这种笔单价为x元,则本子单价为(x4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价这种笔的支数m+本子的单价本子的本数n=1000,再求出整数解即可【解答】解:(1)设这种笔单价为x元,则本子单价为(x4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x4=6答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10n,m、n都是正整数,n=5时,m=7,n=10时,m=4,n=15,m=1;有三种方案:购买这种笔7支,购买本子5本;购买这种笔4支,购买本子10本;购买这种笔1支,购买本子15本【例题3】(2017宁德)小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的写出题中被墨水污染的条件,并求解这道应用题【考点】9A:二元一次方程组的应用【专题】12 :应用题【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元【点评】此题考查了二元一次方程组的应用,弄清题中的等量关系是解本题的关键【例题4】(2017湖北宜昌)某市总预算a亿元用三年时间建成一条轨道交通线轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数【考点】AD:一元二次方程的应用;B7:分式方程的应用【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得【解答】解:(1)三年用于辅助配套的投资将达到54=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%【专项训练】一、选择题:1. (2017深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A10%x=330B(110%)x=330C(110%)2x=330D(1+10%)x=330【考点】89:由实际问题抽象出一元一次方程【分析】设上个月卖出x双,等量关系是:上个月卖出的双数(1+10%)=现在卖出的双数,依此列出方程即可【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330故选D2. (2017山东滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A22x=16(27x)B16x=22(27x)C216x=22(27x)D222x=16(27x)【考点】89:由实际问题抽象出一元一次方程【分析】设分配x名工人生产螺栓,则(27x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程【解答】解:设分配x名工人生产螺栓,则(27x)名生产螺母,一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,可得222x=16(27x)故选D3. (2017黑龙江佳木斯)“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A4种B5种C6种D7种【考点】95:二元一次方程的应用【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=因为x是正整数,所以当x=2时,y=7当x=5时,y=5当x=8时,y=3当x=11时,y=1即有4种购买方案故选:A4. (2017四川眉山)已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D3【考点】97:二元一次方程组的解【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可【解答】解:把代入方程组得:,解得:,所以a2b=2()=2,故选B5. (2017甘肃张掖)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2若设道路的宽为xm,则下面所列方程正确的是()A(322x)(20x)=570B32x+220x=3220570C(32x)(20x)=3220570D32x+220x2x2=570【考点】AC:由实际问题抽象出一元二次方程【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程【解答】解:设道路的宽为xm,根据题意得:(322x)(20x)=570,故选:A二、填空题:6. (2017乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是100元【考点】8A:一元一次方程的应用【分析】此题的等量关系:实际售价=标价的六折=进价(1+获利率),设未知数,列方程求解即可【解答】解:设进价是x元,则(1+20%)x=2000.6,解得:x=100则这件衬衣的进价是100元故答案为1007. (2017湖北江汉)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需48元【考点】9A:二元一次方程组的应用【分析】设1套文具的价格为x元,一套图书的价格为y元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入x+y中,即可得出结论【解答】解:设1套文具的价格为x元,一套图书的价格为y元,根据题意得:,解得:,x+y=20+28=48故答案为:488. (2017黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10%【考点】AD:一元二次方程的应用【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1x),第二次降价后的售价是原来的(1x)2,再根据题意列出方程解答即可【解答】解:设这两次的百分率是x,根据题意列方程得100(1x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去)答:这两次的百分率是10%故答案为:10%【点评】本题考查一元二次方程的应用,要掌握求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b9. (2017湖南岳阳)在ABC中BC=2,AB=2,AC=b,且关于x的方程x24x+b=0有两个相等的实数根,则AC边上的中线长为2【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论【解答】解:关于x的方程x24x+b=0有两个相等的实数根,=164b=0,AC=b=4,BC=2,AB=2,BC2+AB2=AC2,ABC是直角三角形,AC是斜边,AC边上的中线长=AC=2;故答案为:2【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明ABC是直角三角形是解决问题的关键10. (2017甘肃张掖)若关于x的一元二次方程(k1)x2+4x+1=0有实数根,则k的取值范围是k5且k1【考点】AA:根的判别式【分析】根据一元二次方程有实数根可得k10,且b24ac=164(k1)0,解之即可【解答】解:一元二次方程(k1)x2+4x+1=0有实数根,k10,且b24ac=164(k1)0,解得:k5且k1,故答案为:k5且k1三、解答题:1. (2017广西)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用【分析】(1)设甲队胜了x场,则负了(10x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案【解答】解:(1)设甲队胜了x场,则负了(10x)场,根据题意可得:2x+10x=18,解得:x=8,则10x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10a)15,解得:a5,答:乙队在初赛阶段至少要胜5场2. (2017哈尔滨)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34a)件根据获得的利润不低于4000元,建立不等式求出其解就可以了【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元(2)设购进A种商品a件,则购进B种商品(34a)件由题意,得200a+100(34a)4000,解得:a6答:威丽商场至少需购进6件A种商品3. (2017四川眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?【考点】AD:一元二次方程的应用【分析】(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论【解答】解:(1)(1410)2+1=3(档次)答:此批次蛋糕属第3档次产品(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)(76+44x)=1080,整理得:x216x+55=0,解得:x1=5,x2=11答:该烘焙店生产的是第5档次或第11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论