




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Ch4、不定积分1、不定积分的概念与性质1、 原函数与不定积分定义1:若,则称为的原函数。 连续函数一定有原函数; 若为的原函数,则也为的原函数;事实上, 的任意两个原函数仅相差一个常数。事实上,由,得故表示了的所有原函数,其中为的一个原函数。定义2:的所有原函数称为的不定积分,记为,积分号,被积函数,积分变量。显然2、 基本积分表(共24个基本积分公式)3、 不定积分的性质2、不定积分的换元法一、 第一类换元法(凑微分法)1、例1、求不定积分2、例2、求不定积分3、 例4、求不定积分二、 第二类换元法1、三角代换例1、解:令,则原式=例2、解:令原式=例3、解:令,则原式= 例4、解:令,则 原式=例5、解:令,则原式= 例6、解:令,则原式=小结:中含有可考虑用代换2、无理代换例7、解:令原式=例8、解:令原式=例9、解:令原式=例10、解:令原式4、 倒代换例11、解:令原式 3、分部积分法分部积分公式:,故 (前后相乘)(前后交换)例1、例2、例3、或解:令原式例4、或解:令原式例5、故例6、例7、4、两种典型积分一、有理函数的积分有理函数可用待定系数法化为部分分式,然后积分。例1、将化为部分分式,并计算解:故或解: 例2、例3、例4、二、三角函数有理式的积分 对三角函数有理式积分,令, ,故,三角函数有理式积分即变成了有理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阀门检修专业试题及答案
- 湖北省武汉市部分学校2026届高三上学期九月调研考试政治(含答案)
- 广告专业综合试题及答案
- 河南省许昌市禹州市2024-2025学年三年级下册期末英语试题(含答案无听力原文无听力音频)
- 茂名阳台花园施工方案
- Unit 1 Wish you were here单元检测(含解析) 译林版(2019) 选择性必修 第三册
- 物流运输合同协议
- 禁毒宣传进校园安全教育
- 2024-2025学年河南省驻马店市驿城区八年级(上)期末数学试卷(含答案)
- 2022年广西壮族自治区柳州市市铁路第一中学高一生物联考试题
- 人社局财务管理暂行办法
- 渔业执法技术手段-洞察及研究
- 冶金行业重大生产安全事故隐患判定标准
- 2025年广西中考化学试卷真题(含答案解析)
- 炎症性肠病的饮食护理措施讲课件
- 物业公司廉洁培训课件
- 2025至2030年中国成都市酒店行业市场发展调研及投资方向分析报告
- 医院“十五五”发展规划(2026-2030)
- 黑龙江学位英语考试试题及答案
- AI大模型驱动的智慧供应链ISC+IT蓝图规划设计方案
- (2025)语文单招考试试题与答案
评论
0/150
提交评论