



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.1.1平行四边形的性质 教学设计课题平行四边形性质课型新授课时序数1备课人审核人授课人授课日期教学目标知识与技能1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质2会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力情感 态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣3、初步达到演绎数学论证过程的能力教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用难点运用平行四边形的性质进行有关的论证和计算媒 体教 具 教具:三角板 ;ppt课时1课时教 学 过 程教学内容师生互动一、课堂引入1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象l 平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角而三角形对边是指一个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)l 让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致? l 相邻的角指四边形中有一条公共边的两个角注意和第一章的邻角相区别教学时结合图形使学生分辨清楚l 作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题l 总结平行四边形的性质l 范例学习平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,AB/DC,AD/BC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”AB/DC ,AD/BC , 四边形ABCD是平行四边形(判定); 四边形ABCD是平行四边形AB/DC, AD/BC(性质)二、【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下(1) 由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中,相邻的角互为补角(2)猜想 平行四边形的对边相等、对角相等下面证明这个结论的正确性已知:如图ABCD,求证:ABCD,CBAD,BD,BADBCD分析:作ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论证明:连接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四边形性质1平行四边形的对边相等平行四边形性质2 平行四边形的对角相等三、范例分析例1(教材P42例1)4、 练习(教材P43)第1、2题板书设计平行四边形性质一、新知探究平行四边形性质1平行四边形的对边相等平行四边形性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术项链艺术创作全解析
- 河北省鹿泉市2025年上半年公开招聘村务工作者试题含答案分析
- 河北省临西县2025年上半年事业单位公开遴选试题含答案分析
- 2025年二手房装修工程设计与施工监理、验收合同范本
- 2025年建筑项目竣工测绘服务合同
- 2025年度轻钢龙骨砌筑工程劳务承包合同
- 2025年荒山荒滩治理承包地租赁合同汇编
- 2025年充电桩安装与充电站安全保障体系合同范本
- 2025版汽车维修贷款授权委托合同
- 2025东航大客户航空保险定制服务合同
- 环境空气和废气 氯化氢的测定 离子色谱法(征求意见稿)
- 历史有关的书籍
- 2024年度新版中华人民共和国传染病防治法课件
- 精度班组安全标准化汇报
- 2024年国家电网招聘之法学类题库附参考答案【精练】
- 2024上海市奉贤区第八批储备人才及定向选调生招募91人高频考题难、易错点模拟试题(共500题)附带答案详解
- 电线电缆产品生产许可证实施细则样本
- 湖南高职单招《综合素质测试》考试题库(含答案)
- 口腔颌面部外伤的处理课件
- 《现代涉外礼仪》课件
- 春风十里不如你:一本书读尽冯唐人生金线年轻时极尽欢喜年长
评论
0/150
提交评论