《机械制图教案》第二章_第1页
《机械制图教案》第二章_第2页
《机械制图教案》第二章_第3页
《机械制图教案》第二章_第4页
《机械制图教案》第二章_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七讲 21 投影法的基本知识 22 三视图的形成与投影规律课 题:1、投影法的基本知识2、三视图的形成与投影规律课堂类型:讲授教学目的:1、介绍投影法的概念、种类、应用 2、讲解正投影法的基本性质 3、介绍三投影面体系和三视图的形成、投影规律教学要求:1、掌握正投影法的基本性质 2、理解并掌握三视图的形成和投影规律教学重点:1、正投影法的基本性质 2、三视图的投影规律教学难点:三视图与物体方位的对应关系教 具:自制的三投影面体系模型、简单几何体模型教学方法:讲授与课堂演示、举例相结合。教学过程:一、 复习旧课简要复习平面图形的作图方法和步骤。二、引入新课题在工程技术中,人们常用到各种图样,如机械图样、建筑图样等。这些图样都是按照不同的投影方法绘制出来的,而机械图样是用正投影法绘制的。三、教学内容(一)投影法的基本知识 1、投影法的概念举例:在日常生活中,人们看到太阳光或灯光照射物体时,在地面或墙壁上出现物体的影子,这就是一种投影现象。我们把光线称为投射线(或叫投影线),地面或墙壁称为投影面,影子称为物体在投影面上的投影。下面进一步从几何观点来分析投影的形成。设空间有一定点S和任一点A,以及不通过点S和点A的平面P,如图21所示,从点S经过点A作直线SA,直线SA必然与平面P相交于一点a,则称点a为空间任一点A在平面P上的投影,称定点S为投影中心,称平面P为投影面,称直线SA为投影线。据此,要作出空间物体在投影面上的投影,其实质就是通过物体上的点、线、面作出一系列的投影线与投影面的交点,并根据物体上的线、面关系,对交点进行恰当的连线。图21 投影法的概念 图22 中心投影法如图22所示,作ABC在投影面P上的投影。先自点S过点A、B、C分别作直线SA、SB、SC与投影面P的交点a、b、c,再过点a、b、c作直线,连成abc ,abc即为空间的ABC在投影面P上的投影。上述这种用投射线(投影线)通过物体,向选定的面投影,并在该面上得到图形的方法称为投影法。2、投影法的种类及应用(1)中心投影法投影中心距离投影面在有限远的地方,投影时投影线汇交于投影中心的投影法称为中心投影法,如图22所示。缺点:中心投影不能真实地反映物体的形状和大小,不适用于绘制机械图样。优点:有立体感,工程上常用这种方法绘制建筑物的透视图。(2)平行投影法投影中心距离投影面在无限远的地方,投影时投影线都相互平行的投影法称为平行投影法,如图23所示。根据投影线与投影面是否垂直,平行投影法又可以分为两种:1)斜投影法投影线与投影面相倾斜的平行投影法,如图23(a)所示。2)正投影法投影线与投影面相垂直的平行投影法,如图23(b)所示。 (a) 斜投影法 (b) 正投影法图23 平行投影法正投影法优点:能够表达物体的真实形状和大小,作图方法也较简单,所以广泛用于绘制机械图样。(二)三视图的形成与投影规律在机械制图中,通常假设人的视线为一组平行的,且垂至于投影面的投影线,这样在投影面上所得到的正投影称为视图。一般情况下,一个视图不能确定物体的形状。如图26所示,两个形状不同的物体,它们在投影面上的投影都相同。因此,要反映物体的完整形状,必须增加由不同投影方向所得到的几个视图,互相补充,才能将物体表达清楚。工程上常用的是三视图。图26 一个视图不能确定物体的形状1、三投影面体系与三视图的形成(1)三投影面体系的建立三投影面体系由三个互相垂直的投影面所组成,如图27所示。在三投影面体系中,三个投影面分别为:正立投影面:简称为正面,用V表示;水平投影面:简称为水平面,用H表示;侧立投影面:简称为侧面,用W表示。三个投影面的相互交线,称为投影轴。它们分别是:OX轴:是V面和H面的交线,它代表长度方向;OY轴:是H面和W面的交线,它代表宽度方向;OZ轴:是V面和W面的交线,它代表高度方向;三个投影轴垂直相交的交点O,称为原点。 图27 三投影面体系(2)三视图的形成将物体放在三投影面体系中,物体的位置处在人与投影面之间,然后将物体对各个投影面进行投影,得到三个视图,这样才能把物体的长、宽、高三个方向,上下、左右、前后六个方位的形状表达出来,如图28(a)所示。三个视图分别为:主视图:从前往后进行投影,在正立投影面(V面)上所得到的视图。俯视图:从上往下进行投影,在水平投影面(H面)上所得到的视图。主视图:从前往后进行投影,在侧立投影面(W面)上所得到的视图。(a) (b)(c) (d)图28 三视图的形成遇展开(3)三投影面体系的展开在实际作图中,为了画图方便,需要将三个投影面在一个平面(纸面)上表示出来,规定:使V面不动,H面绕OX轴向下旋转90与V面重合, W面绕OZ轴向右旋转90与V面重合,这样就得到了在同一平面上的三视图,如图28(b)所示。可以看出,俯视图在主视图的下方,左视图在主视图的右方。在这里应特别注意的是:同一条OY轴旋转后出现了两个位置,因为OY是H面和W面的交线,也就是两投影面的共有线,所以OY轴随着H面旋转到OYH的位置,同时又随着W面旋转到OYW的位置。为了作图简便,投影图中不必画出投影面的边框,如图28(c)所示。由于画三视图时主要依据投影规律,所以投影轴也可以进一步省略,如图28(d)所示。2、三视图的投影规律从图29可以看出,一个视图只能反映两个方向的尺寸,主视图反映了物体的长度和高度,俯视图反映了物体的长度和宽度,左视图反映了物体的宽度和高度。由此可以归纳出三视图的投影规律:主、俯视图“长对正”(即等长);主、左视图“高平齐”(即等高);俯、左视图“宽相等”(即等宽);三视图的投影规律反映了三视图的重要特性,也是画图和读图的依据。无论是整个物体还是物体的局部,其三面投影都必须符合这一规律。图29 视图间的“三等”关系3、三视图与物体方位的对应关系物体有长、宽、高三个方向的尺寸,有上下、左右、前后六个方位关系,如图210(a)所示。六个方位在三视图中的对应关系如图210(b)所示。主视图反映了物体的上下、左右四个方位关系;俯视图反映了物体的前后、左右四个方位关系;左视图反映了物体的上下、前后四个方位关系。(要求学生必须熟记 。)(a)立体图 (b)投影图图210 三视图的方位关系注意:以主视图为中心,俯视图、左视图靠近主视图的一侧为物体的后面,远离主视图的一侧为物体的前面。四、小结1、 概念:投影法、中心投影法、平行投影法、斜投影、正投影。2、正投影法的基本性质3、三视图的投影规律4、三视图与物体方位的对应关系第八讲 23 点的投影课 题:1、点的投影及其标记2、点的三面投影规律3、点的三面投影与直角坐标4、特殊位置点的投影5、两点的相对位置课堂类型:讲授教学目的:1、介绍空间点及其投影的标记标记符号 2、讲解点的三面投影规律 3、讲解特殊位置点的投影4、讲解两点的相对位置和重影点教学要求:1、理解并掌握在两面和三面投影图中点的投影规律 2、熟练掌握点的投影与与其直角坐标的关系以及由点的两个投影求作第三投影的方法3、掌握由点的轴测图作投影图和由点的投影图作轴测图的方法4、根据两个点的投影,能够理解并判别该两点在空间的相对位置5、掌握重影点的概念及其可见性的判别方法教学重点:1、在两面和三面投影图中点的投影规律 2、重影点的概念和两点的相对位置教学难点:1、点的三面投影与直角坐标的关系 2、特殊位置点的投影教 具:自制的三投影面体系模型教学方法:课堂教学中要加强三等关系和六方位关系的基本训练,着重突出空间概念的培养,这是树立空间概念,搭起空间架子的起步。这部分教学要突出空间位置的判断。运用直观教具,采用讲授和演示教学法,讲情三投影面体系的有关内容和展开方法。注意以下几个要点:投影面展开前:(1)空间点对投影面的距离及对应坐标的关系。(2)空间点的投影与其对应坐标的关系。 投影面展开后:要演示两投影连线与投影轴的关系,从而引出投影规律。教学过程:一、复习旧课简要复习有关投影法的几个基本概念。重点复习三视图的形成、投影规律和方位关系。二、引入新课题任何物体都是由点、线、面等几何元素构成的,只有学习和掌握了几何元素的投影规律和特征,才能透彻理解机械图样所表示物体的具体结构形状。本次课先来学习点的投影。三、教学内容(一)点的投影及其标记当投影面和投影方向确定时,空间一点只有唯一的一个投影。如图211(a)所示,假设空间有一点A,过点A分别向H面、V面和W面作垂线,得到三个垂足a、a、a,便是点A在三个投影面上的投影。规定用大写字母(如A)表示空间点,它的水平投影、正面投影和侧面投影,分别用相应的小写字母(如a、a 和a)表示。根据三面投影图的形成规律将其展开,可以得到如图211(b)所示的带边框的三面投影图,即得到点A两面投影;省略投影面的边框线,就得到如图211(c)所示的A点的三面投影图,(注意:要与平面直角坐标系相区别。) (a) (b) (c)图211 点的两面投影(二)点的三面投影规律1、点的投影与点的空间位置的关系从图211(a)、(b)可以看出,Aa、A a、A a 分别为点A到H、V、W面的距离,即:A a = aa x = aa y (即aaYW),反映空间点A到H面的距离;A a =a a x = aa z ,反映空间点A到V面的距离;A a = aa z = a a y (即aYH),反映空间点A到W面的距离;上述即是点的投影与点的空间位置的关系,根据这个关系,若已知点的空间位置,就可以画出点的投影。反之,若已知点的投影,就可以完全确定点在空间的位置。2、点的三面投影规律由图211中还可以看出:a aYH = aa z 即aaOXaa x = aaYW 即aaOZa a x = aa z这说明点的三个投影不是孤立的,而是彼此之间有一定的位置关系。而且这个关系不因空间点的位置改变而改变,因此可以把它概括为普遍性的投影规律:(1)点的正面投影和水平投影的连线垂直OX轴,即aaOX;(2)点的正面投影和侧面投影的连线垂直OZ轴,即aaOZ;(3)点的水平投影a和到OX轴的距离等于侧面投影a 到OZ轴的距离,即a a x = aa z 。(可以用45辅助线或以原点为圆心作弧线来反映这一投影关系)根据上述投影规律,若已知点的任何两个投影,就可求出它的第三个投影。3、讲解例题(例21) 已知点A的 正面投影a 和侧面投影a(图212),求作其水平投影a 。 (a)题目 (b)解答图212 已知点的两个投影求第三个投影强调:一般在作图过程中,应自点O作辅助线(与水平方向夹角为45),以表明a a x = aa z的关系。(三)点的三面投影与直角坐标1、点的三面投影与直角坐标的关系三投影面体系可以看成是一个空间直角坐标系,因此可用直角坐标确定点的空间位置。投影面H、V、W作为坐标面,三条投影轴OX、OY、OZ作为坐标轴,三轴的交点O作为坐标原点。 由图213可以看出A点的直角坐标与其三个投影的关系: 点A到W面的距离 = Oa x = aa z = a aYH = x坐标; 点A到V面的距离 = OaYH = a a x = aaz = y坐标; 点A到H面的距离 = Oa z = a a x = aaYW = z坐标。图213 点的三面投影与直角坐标用坐标来表示空间点位置比较简单,可以写成A (x,y,z)的形式。由图213(b)可知,坐标x和z决定点的正面投影a ,坐标x和y决定点的水平投影a,坐标y和z决定点的侧面投影 a,若用坐标表示,则为a (x,y,0),a (x,0,z), a (0,y,z)。因此,已知一点的三面投影,就可以量出该点的三个坐标;相反地,已知一点的三个坐标,就可以量出该点的三面投影。2、讲解例题(例22) 已知点A的坐标(20,10,18),作出点的三面投影,并画出其立体图。其作图方法与步骤如图214所示: (a) (b) (c)图214 由点的坐标作点的三面投影立体图的作图步骤如图215所示; (a) (b) (c)图215 由点的坐标作立体图(四)特殊位置点的投影1、在投影面上的点(有一个坐标为0)有两个投影在投影轴上,另一个投影和其空间点本身重合。例如在V面上的点A,如图216(a)所示;2、在投影轴上的点(有两个坐标为0)有一个投影在原点上,另两个投影和其空间点本身重合。例如在OZ轴上的点B,如图216(b)所示;3、在原点上的空间点(有三个坐标都为0)它的三个投影必定都在原点上。如图216(c)所示。 (a) (b) (c)图216 特殊位置点的投影(五)两点的相对位置1、两点的相对位置设已知空间点A,由原来的位置向上(或向下)移动,则z坐标随着改变,也就是A点对H面的距离改变;如果点A,由原来的位置向前(或向后)移动,则y坐标随着改变,也就是A点对V面的距离改变;如果点A,由原来的位置向左(或向右)移动,则x坐标随着改变,也就是A点对W面的距离改变.综上所述,对于空间两点A、B的相对位置(1)距W面远者在左(x坐标大);近者在左(x坐标小);(2)距V面远者在前(y坐标大);近者在后(y坐标小);(3)距H面远者在左(z坐标大);近者在左(z坐标小)。2、举例如图217所示,若已知空间两点的投影,即点A的三个投影a、a 、a 和点B的三个投影b、b 、b,用A、B两点同面投影坐标差就可判别A、B两点的相对位置。 由于xA xB,表示B点在A点的右方;zB zA,表示B点在A点的上方;yA yB,表示B点在点的A后方。总起来说,就是B点在A点的右、后、上方。图217 两点的相对位置3、重影点若空间两点在某一投影面上的投影重合,则这两点是该投影面的重影点。这时,空间两点的某两坐标相同,并在同一投射线上。当两点的投影重合时,就需要判别其可见性,应注意:对H面的重影点,从上向下观察,z坐标值大者可见;对W面的重影点,从左向右观察,x坐标值大者可见;对V面的重影点,从前向后观察,y坐标值大者可见。在投影图上不可见的投影加括号表示,如(a)。4、举例如图218中,C、D位于垂直H面的投射线上,c、d重影为一点,则C、D为对H面的重影点,z坐标值大者为可见,图中zC zD,故c为可见,d为不可见,用c(d)表示。四、小结1、空间点及其投影的标记标记符号2、点的投影与与其直角坐标的关系3、点的三面投影规律4、特殊位置点的投影5、两点的相对位置和重影点五、布置作业习题集21(1)(8)第九讲 24 直线的投影课 题:1、直线的投影图2、直线对于一个投影面的投影特性3、各种位置直线的投影特性4、一般位置直线的实长和对投影面的倾角课堂类型:讲授教学目的:1、讲解三种投影面平行线和三种投影面垂直线的投影特性 2、讲解用直角三角形法求一般位置直线的实长和倾角教学要求:1、理解并掌握各种位置直线的投影特性,并能根据投影特性判别直线对投影面的相对位置2、熟练掌握求一般位置直线的实长及其对各投影面倾角的直角三角形法教学重点:1、各种位置直线的投影特性 2、直角三角形法教学难点:直角三角形法教 具:自制的三投影面体系模型; 挂图:“投影面平行线的投影特性”、“投影面垂直线的投影特性”教学方法:直线投影的实质,就是线段两个端点的同面投影的连线;尤其是投影面垂直线,实质就是重影点。为了进一步加强空间思维的训练,要用一定量的例题作演示性讲解,并布置适当的练习加以巩固。教学过程:一、复习旧课1、 讲评上次作业。2、复习点的投影与与其直角坐标的关系3、复习点的三面投影规律4、复习特殊位置点的投影5、复习两点的相对位置和重影点二、引入新课题空间两点确定一条空间直线段,空间直线的投影一般也是直线。直线段投影的实质,就是线段两个端点的同面投影的连线;所以学习直线的投影,必须于点的投影联系起来。三、教学内容(一)直线的投影图空间一直线的投影可由直线上的两点(通常取线段两个端点)的同面投影来确定。如图219所示的直线AB,求作它的三面投影图时,可分别作出A、B两端点的投影(a、a、a)、(b、b、b),然后将其同面投影连接起来即得直线AB的三面投影图(a b、a b 、ab)。 (a) (b) (c)图219 直线的投影(二)直线对于一个投影面的投影特性空间直线相对于一个投影面的位置有平行、垂直、倾斜三种,三种位置有不同的投影特性。1、真实性 当直线与投影面平行时,则直线的投影为实长。如图220(a)所示。2、积聚性 当直线与投影面垂直时,则直线的投影积聚为一点。如图220(b)所示。3、收缩性 当直线与投影面倾斜时,则直线的投影小于直线的实长。如图220(c)所示。(a) (b) (c)图220 直线的投影(三)各种位置直线的投影特性 根据直线在三投影面体系中的位置可分为投影面倾斜线、投影面平行线、投影面垂直线三类。前一类直线称为一般位置直线,后两类直线称为特殊位置直线。1、投影面平行线平行于一个投影面且同时倾斜于另外两个投影面的直线称为投影面平行线。平行于V面的称为正平线;平行于H面的称为水平线;平行于W面的称为侧平线。直线与投影面所夹的角称为直线对投影面的倾角。、分别表示直线对H面、V面、W面的倾角。举例说明:正平线的投影特性强调:(1)斜线反映实长;(2)直线的倾角、。总结投影面平行线的投影特性:两平一斜。要求学生必须掌握表21中的图例。对于投影面平行线的辨认:当直线的投影有两个平行于投影轴,第三投影与投影轴倾斜时,则该直线一定是投影面平行线,且一定平行于其投影为倾斜线的那个投影面。讲解例题(例23) 如图221所示,已知空间点A,试作线段AB,长度为15,并使其平行V面,与H面倾角30(只需一解)。(a)题目 (b)解答图221 作正平线AB2、投影面垂直线垂直于一个投影面且同时平行于另外两个投影面的直线称为投影面垂直线。垂直于V面的称为正垂线;垂直于H面的称为铅垂线;垂直于W面的称为侧垂线。举例说明:侧垂线的投影特性强调:(1)两个投影反映实长;(2)一个投影积聚为一点。总结投影面平行线的投影特性:两线一点。要求学生必须掌握表22中的图例。对于投影面垂直线的辨认:直线的投影中只要有一个投影积聚为一点,则该直线一定是投影面垂直线,且一定垂直于其投影积聚为一点的那个投影面。讲解例题(例24) 如图222所示,已知正垂线AB的点A的投影,直线AB长度为10毫米,试作直线AB的三面投影(只需一解)。(a)题目 (b)解答图222 作正垂线AB3、一般位置直线与三个投影面都处于倾斜位置的直线称为一般位置直线。举例:如图223(a)所示,直线AB与H、V、W面都处于倾斜位置,倾角分别为、。其投影如图223(b)所示。(a) (b)一般位置直线的投影特征可归纳为:(1)直线的三个投影和投影轴都倾斜,各投影和投影轴所夹的角度不等于空间线段对相应投影面的倾角;(2)任何投影都小于空间线段的实长,也不能积聚为一点。对于一般位置直线的辨认:直线的投影如果与三个投影轴都倾斜,则可判定该直线为一般位置直线。(四)一般位置直线的实长和对投影面的倾角1、直角三角形法的作图原理如图224所示,AB为一般位置直线,过端点A作直线平行其水平投影ab并交Bb于C,得直角三角形ABC。在直角三角形ABC中,斜边AB就是线段本身,底边AC等于线段AB的水平投影ab,对边BC等于线段AB的两端点到H面的距离差(Z坐标差),也即等于a b 两端点到投影轴OX的距离差,而AB与底边AC的夹角即为线段AB对H面的倾角。 图224 直角三角形法的原理2、直角三角形法的作图方法和步骤根据上述分析,只要用一般位置直线在某一投影面上的投影作为直角三角形的底边,用直线的两端点到该投影面的距离差为另一直角边,作出一直角三角形。此直角三角形的斜边就是空间线段的真实长度,而斜边与底边的夹角就是空间线段对该投影面的倾角。这就是直角三角形法。作图方法与步骤如图225所示,用线段的任一投影为底边均可用直角三角形法求出空间线段的实长,其长度是相同的,但所得倾角不同。在直角三角形法中,直角三角形包含四个 图225直角三角形法因素:投影长、坐标差、实长、倾角。只要知道两个因素,就可以将其余两个求出来。3、讲解例题(例25) 如图226(a)所示,已知直线AB的实长L =15mm,及直线AB的水平投影ab和点A的正面投影a ,试用直角三角形法求出直线AB的正面投影a b。 (a)题目 (b)解答图226 直角三角形法应用示例四、小结1、三种位置直线(包括七种类型)的投影特性。尤其注意:实长和倾角的判断。2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。五、布置作业习题集22(1)、(2)、(7)第十讲 24 直线的投影课 题:1、直线上点的投影2、两直线的相对位置3、直角投影定理课堂类型:讲授教学目的:1、讲解直线上点的投影特性 2、讲解两直线各种相对位置(平行、相交、交叉)的投影特点 3、讲解用直角投影定理教学要求:1、理解并掌握直线投影的定比性的解题方法2、会根据两直线的投影判断它们的相对位置,并熟练掌握两直线平行、相交的作图问题3、理解并掌握直角投影定理的特点和解题思路教学重点:1、两直线各种相对位置(平行、相交、交叉)的投影特点 2、直角投影定理教学难点:利用直角投影定理图解空间几何问题教 具:自制的三投影面体系模型教学方法:例题辅助讲解教学过程:一、复习旧课1、三种位置直线(包括七种类型)的投影特性。尤其注意:实长和倾角的判断。2、用直角三角形法求一般位置直线的实长及其对各投影面倾角的方法和步骤。二、引入新课题上次课我们学习了三种位置直线的投影特性,本次课我们继续学习空间直线的其他投影特性。三、教学内容(一)直线上点的投影1、直线上点的投影点在直线上,则点的各个投影必定在该直线的同面投影上,反之,若一个点的各个投影都在直线的同面投影上,则该点必定在直线上。举例:如图227所示直线AB上有一点C,则C点的三面投影c、c、c 必定分别在该直线AB的同面投影ab、a b、ab 上。(a) (b)图227 直线上点的投影2、直线投影的定比性直线上的点分割线段之比等于其投影之比,这称为直线投影的定比性。在图227中,点C在线段AB上,它把线段AB分成AC和CB两段。根据直线投影的定比性,AC:CB = ac:cb = a c:c b = ac:cb 。3、讲解例题(例26) 如图228(a),已知侧平线AB的两投影和直线上K点的正面投影k,求K点的水平投影k 。 (a)题目 (b) 解法1 (c)解法2图228 求直线上点的投影(二)两直线的相对位置两直线的相对位置有平行、相交、交叉三种情况。1、两直线平行(1)特性若空间两直线平行,则它们的各同面投影必定互相平行。如图229所示,由于ABCD,则必定abcd、 a bc d、abcd 。反之,若两直线的各同面投影互相平行,则此两直线在空间也必定互相平行。 (a) (b)图229 两直线平行(2)判定两直线是否平行1)如果两直线处于一般位置时,则只需观察两直线中的任何两组同面投影是否互相平行即可判定。2)当两平行直线平行于某一投影面时,则需观察两直线在所平行的那个投影面上的投影是否互相平行才能确定。如图230所示,两直线AB、CD均为侧平线,虽然abcd、 abcd,但不能断言两直线平行,还必需求作两直线的侧面投影进行判定,由于图中所示两直线的侧面投影ab 与cd相交,所以可判定直线AB、CD不平行。2、两直线相交 图230 判断两直线是否平行(1)特性若空间两直线相交,则它们的各同面投影必定相交,且交点符合点的投影规律。如图231所示,两直线AB、CD相交于K点,因为K点是两直线的共有点,则此两直线的各组同面投影的交点 k、 k、k 必定是空间交点K的投影。反之,若两直线的各同面投影相交,且各组同面投影的交点符合点的投影规律,则此两直线在空间也必定相交。(a) (b) 图231 两直线相交(2)判定两直线是否相交1)如果两直线均为一般位置线时,则只需观察两直线中的任何两组同面投影是否相交且交点是否符合点的投影规律即可判定。2)当两直线中有一条直线为投影面平行线时,则需观察两直线在该投影面上的投影是否相交且交点是否符合点的投影规律才能确定;或者根据直线投影的定比性进行判断。如图232所示,两直线AB、CD两组同面投影ab与cd、a b 与c d 虽然相交,但经过分析判断,可判定两直线在空间不相交。(a) (b)图232 两直线在空间不相交3、两直线交叉两直线既不平行又不相交,称为交叉两直线。(1)特性若空间两直线交叉,则它们的各组同面投影必不同时平行,或者它们的各同面投影虽然相交,但其交点不符合点的投影规律。反之亦然。如图233(a)所示。(2)判定空间交叉两直线的相对位置空间交叉两直线的投影的交点,实际上是空间两点的投影重合点。利用重影点和可见性,可以很方便地判别两直线在空间的位置。在图233(b)中,判断AB和CD的正面重影点 k(l)的可见性时,由于K、L两点的水平投影k比l的y坐标值大,所以当从前往后看时,点K可见,点L不可见,由此可判定AB在CD的前方。同理,从上往下看时,点M可见,点N不可见,可判定CD在AB的上方。 (a) (b)图233 两直线交叉(三)直角投影定理 1、概念空间垂直相交的两直线,若其中的一直线平行于某投影面时,则在该投影面的投影仍为直角。反之,若相交两直线在某投影面上的投影为直角,且其中有一直线平行于该投影面时,则该两直线在空间必互相垂直。这就是直角投影定理。如图234所示。已知ABBC,且AB为正平线,所以ab必垂直于bc 。(a) (b) 图234 垂直相交的两直线的投影2、讲解例题(目的是帮助学生理解掌握利用直角投影定理图解空间几何问题的解题思路和解题方法)(1)例27 求点A到直线BC的距离, 如图235(a) (a)题目 (b)解法 图235 求点到直线的距离(2)例28 如图236(a)所示,已知菱形ABCD的一条对角线AC为一正平线,菱形的一边AB位于直线AM上,求该菱形的投影图。(a)题目 (b)解法图236 求菱形的投影图四、小结1、平行两直线的投影特性和判别方法。2、相交两直线的投影特性和判别方法。3、交叉两直线的投影特性。4、直角投影定理的应用五、布置作业习题集22(3)、(4)、(5)、(6)、(8)、(9)、(10)、(11)第十一讲 25 平面的投影课 题:1、平面的表示法2、平面对于一个投影面的投影特性3、各种位置平面的投影特性课堂类型:讲授教学目的:1、介绍平面的两种表示法2、讲解三种投影面平行面和三种投影面垂直面的投影特性教学要求:1、熟悉平面在投影图上的表示法2、理解并掌握各种位置平面的投影特性,并能根据投影特性判别平面对投影面的相对位置教学重点:各种位置平面的投影特性,教 具:自制的三投影面体系模型; 挂图:“投影面平行面的投影特性”、“投影面垂直面的投影特性”教学方法:平面投影的实质,就是平面形各顶点的同面投影依次连线。各种位置平面的投影,讲解重点放在投影特性和有无实形的判断上;对于每一种位置平面形的投影,重点讲解其中的一种类型,其他类型可由学生自己分析解决。教学过程:一、复习旧课1、复习两直线各种相对位置(平行、相交、交叉)的投影特性和判别方法。2、结合作业讲解直角投影定理的应用。二、引入新课题平面图形具有一定的形状、大小和位置,常见的有三角形、矩形、正多边形等直线轮廓的平面形。另外,还有一些由直线或曲线围成的平面形。平面投影的实质,就是求平面形轮廓上的一系列的点的投影(对于多边形而言则是其顶点),然后将各点的同面投影依次连线。三、教学内容(一)平面的表示法在投影图上表示平面有两种方法。1、一组几何元素的投影表示平面(1)不在同一直线上的三点,如图237(a)(2)一直线和直线外一点,如图237(b)(3)相交两直线,如图237(c)(4)平行两直线,如图237(d)(5)任意平面图形,如三角形、四边形、圆形等,如图237(e) (a) (b) (c) (d) (e)图237 用几何元素表示平面注意:为了解题的方便,常常用一个平面图形(如三角形)表示平面。2、迹线表示法迹线空间平面与投影面的交线,如图238(a)所示。平面P与H面的交线称为水平迹线,用PH表示;平面P与V面的交线称为正面迹线,用PV表示;平面P与W面的交线称为侧面迹线,用PW表示。PH 、PV 、PW两两相交的交点Px 、PY 、PZ称为迹线集合点,它们分别位于OX、OY、OZ轴上。由于迹线既是平面内的直线,又是投影面内的直线,所以迹线的一个投影与其本身重合,另两个投影与相应的投影轴重合。在用迹线表示平面时,为了简明起见,只画出并标注与迹线本身重合的投影,而省略与投影轴重合的迹线投影,如图238(b)所示。(a) (b)图238 用迹线表示平面(二)平面对于一个投影面的投影特性空间平面相对于一个投影面的位置有平行、垂直、倾斜三种,三种位置有不同的投影特性。1、真实性 当平面与投影面平行时,则平面的投影为实形,如图239(a)所示。2、积聚性 当平面与投影面垂直时,则平面的投影积聚成一条直线,如图239(b)所示。3、类似性 当直线或平面与投影面倾斜时,则平面的投影是小于平面实形的类似形,如图239(c)所示。(a) (b) (c)图239 平面的投影特性(三)各种位置平面的投影特性 根据平面在三投影面体系中的位置可分为投影面倾斜面、投影面平行面、投影面垂直面三类。前一类平面称为一般位置平面,后两类平面称为特殊位置平面。1、投影面垂直面垂直于一个投影面且同时倾斜于另外两个投影面的平面称为投影面垂直面。垂直于V面的称为正垂面;垂直于H面的称为铅垂面;垂直于W面的称为侧垂面。平面与投影面所夹的角度称为平面对投影面的倾角。、分别表示平面对H面、V面、W面的倾角。举例说明:铅垂面的投影特性强调:(1)两个投影均为类似形;(2)一个投影积聚为直线,并反映、角。总结投影面平行线的投影特性:两面一线。要求学生必须掌握表23中的图例。对于投影面垂直面的辨认:如果空间平面在某一投影面上的投影积聚为一条与投影轴倾斜的直线,则此平面垂直于该投影面。讲解例题(例29) 如图239(a)所示,四边形ABCD垂直于V面,已知H面的投影abcd及B点的V面投影b,且于H面的倾角= 45,求作该平面的V面和W面投影。(a)题目 (b)解答图240 求作四边形平面ABCD的投影2、投影面平行面平行于一个投影面且同时垂直于另外两个投影面的平面称为投影面平行面。平行于V面的称为正平面;平行于H面的称为水平面;平行于W面的称为侧平面;举例说明:正平面的投影特性强调:(1)两个投影积聚为直线;(2)一个投影反映实形。总结投影面平行线的投影特性:两线一面。要求学生必须掌握表24中的图例。对于投影面垂直面的辨认:如果空间平面在某一投影面上的投影积聚为一条与投影轴倾斜的直线,则此平面垂直于该投影面。3、一般位置平面与三个投影面都处于倾斜位置的平面称为一般位置平面。例如平面ABC与H、V、W面都处于倾斜位置,倾角分别为、。其投影如图241所示。一般位置平面的投影特征可归纳为:一般位置平面的三面投影,既不反映实形,也无积聚性,而都为类似形。 图241 一般位置平面对于一般位置平面的辨认:如果平面的三面投影都是类似的几何图形的投影,则可判定该平面一定是一般位置平面。四、小结1、平面的两种表示法。2、三种位置平面(包括七种类型)的投影特性,尤其注意:有无实形的判断。五、布置作业五、布置作业习题集23(1)、(4)、(5)第十二讲 25 平面的投影课 题:1、平面上的直线和点2、平面上的投影面平行线课堂类型:讲授教学目的:1、讲解在平面上取点、取直线的作图方法 2、讲解在平面上取投影面平行线的作图方法教学要求:1、能够熟练掌握在平面上取点、取直线的作图方法2、能够根据在平面上的点、直线的投影规律,特别是用平面上的投影面平行线,完成一些简单的图解问题教学重点:在平面上取点、取直线、取投影面平行线的作图方法教学难点:利用在平面上的点、直线的投影规律,图解空间几何问题教 具:自制的三投影面体系模型;教学方法:例题辅助讲解教学过程:一、复习旧课1、平面的两种表示法:几何元素法和迹线表示法。2、三种位置平面(包括七种类型)的投影特性。二、引入新课题上次课我们学习了三种位置直线的投影特性,本次课我们继续学习在平面上取点、取直线的作图问题。三、教学内容(一)平面上的直线和点1、平面上的点点在平面上的几何条件是:点在平面内的一直线上,则该点必在平面上。因此在平面上取点,必须先在平面上取一直线,然后再在该直线上取点。这是在平面的投影图上确定点所在位置的依据。举例:如图242所示,相交两直线AB、AC确定一平面P,点S取自直线AB,所以点S必在平面P上。(a) (b)图242 平面上的点2、平面上的直线直线在平面上的几何条件是:(1)若一直线通过平面上的两个点,则此直线必定在该平面上。(2)若一直线通过平面上的一点并平行于平面上的另一直线,则此直线必定在该平面上。举例之一:如图243所示,相交两直线AB、AC确定一平面P,分别在直线AB、AC上取点E、F,连接EF,则直线EF为平面P上的直线。作图方法见图243(b)所示。(a) (b)举例之二:如图244所示,相交两直线AB、AC确定一平面P,在直线AC上取点E,过点E作直线MNAB,则直线MN为平面P上的直线。作图方法见图244(b)所示。 (a) (b)图243 平面上的直线3、讲解例题(例210) 如图245(a)所示,试判断点K和点M是否属于ABC所确定的平面。(a)题目 (b)解答 图245 判断点是否属于平面(二)平面上的投影面平行线1、定义属于平面且又平行于一个投影面的直线称为平面上的投影面平行线。平面上的投影面平行线一方面要符合平行线的投影特性,另一方面又要符合直线在平面上的条件。2、举例:如图246所示,过A点在平面内要作一水平线AD,可过a 作a d OX轴,再求出它的水平投影ad,a d 和ad即为ABC上一水平线AD的两面投影。如过C点在平面内要作一正平线CE,可过c作c eOX轴,再求出它的正面投影c e,c e 和ce即为ABC上一正平线CE的两面投影。 图246 平面上的投影面平行线3、讲解例题(例211) ABC平面如图247(a)所示,要求在ABC平面上取一点K ,使K点在A点之下15mm ,在A点之前10mm ,试

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论