二次函数与轴对称.doc_第1页
二次函数与轴对称.doc_第2页
二次函数与轴对称.doc_第3页
二次函数与轴对称.doc_第4页
二次函数与轴对称.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数与轴对称【中考考点】A层次要求(基本要求)1. 能结合实际问题情境了解二次函数的意义B层次要求(略高要求)1. 能通过对实际问题情境的分析确定二次函数的表达式C层次要求(较高要求)1. 能用二次函数解决简单的实际问题2. 能解决二次函数与其他知识结合的有关问题【知识汇总】【精选例题】平谷一模24如图抛物线yx2bx2与x轴交于A,B两点,与y轴交于C点,且A(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)判断的形状,证明你的结论;(3)点是x轴上的一个动点,当MCMD的值最小时,求m的值ABCDxyO11房山二模24如图,已知抛物线经过点B(-2,3)、原点O和x轴上另一点A,它的对称轴与x轴交于点C(2,0),(1)求此抛物线的函数关系式;(2)联结CB, 在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;(3)在(2)的条件下, 联结BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由. xy延庆一模25. 在平面直角坐标系中,抛物线的对称轴为x=2,且经过B(0,4),C(5,9),直线BC与x轴交于点A.(1)求出直线BC及抛物线的解析式.(2)D(1,y)在抛物线上,在抛物线的对称轴上是否存在两点M、N,且MN=2 ,点M在点N的上方,使得四边形BDNM的周长最小,若存在,求出M 、N两点的坐标,若不存在,请说明理由.(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线BC距离为的点P西城一模已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出 的取值范围.宣武一模25如图,矩形OABC的边OC、OA分别与轴、轴重合,点B的坐标是,点D是AB边上一个动点(与点A不重合),沿OD将OAD翻折,点A落在点P处(1)若点P在一次函数的图象上,求点P的坐标;(2)若点P在抛物线图象上,并满足PCB是等腰三角形,求该抛物线解析式;(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值 (第25题图) (第25题备用图1) (第25题备用图2)【中考真题】(08福建)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1) 求抛物线的解析式.(2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。(注:抛物线的对称轴为)09四川泸州如图12,已知二次函数 的图象与x轴的正半轴相交于点A、B,与y轴相交于点C,且 (1)求c的值;(2)若ABC的面积为3,求该二次函数的解析式; (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由图1209四川内江如图所示,已知点,且,抛物线经过A、B、C三点,点是抛物线与直线的一个交点(1)求抛物线的解析式;(2)对于动点,求的最小值;(3)若动点在直线上方的抛物线上运动,求的边AP上的高的最大值OACBxy09四川眉山如图,已知直线与轴交于点A,与轴交于点D,抛物线 与直线交于A、E两点,与轴交于B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论