高中数学解题后反思策略.doc_第1页
高中数学解题后反思策略.doc_第2页
高中数学解题后反思策略.doc_第3页
高中数学解题后反思策略.doc_第4页
高中数学解题后反思策略.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学解题后反思策略石林一中 杨双友摘要:纵观这几年的高考试卷中的一些题目,背景新颖、能力要求高、内在联系密切、思维方法灵活。这正体现了目前新课程理念标准,注重知识的形成过程,关注学生获取知识的过程,不断地培养学生创新精神和实践能力。孔子云:学而不思则罔。数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。解题后反思,命题的意图是什么?考核的概念、知识和能力是什么?验证结论是否正确,命题的条件的应用是否完备?求解论证过程是否判断有据,严密完善?一题多解?多题一解?不断地对问题进行观察分析、归纳类比、抽象概括,对所蕴含的数学方法、数学思想进行不断地思考并做出新的判断,体会解题带来的乐趣,享受探究带来的成就感。逐步养成学生独立思考、积极探究的习惯,并懂得如何学数学。为此,高中数学解题后反思策略就显得尤为重要。关键词:解题后 反思 策略我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。 由于学生认知结构水平的限制,表现出对知识不求甚解,热衷于做大量题,不善于解题后对题目进行反思,普遍欠缺一个提高解题能力的重要环节,也不善于纠正和找出自己的错误,缺乏解题后对解题方法、数学思维的概括,掌握知识的系统性较弱、结构性较差。一道数学题经过一番艰辛,苦思冥想解出答案后,必须认真进行如下探索:命题的意图是什么?考核的概念、知识和能力是什么?验证解题结论是否正确合理,命题所提供的条件的应用是否完备?求解论证过程是否判断有据,严密完善?本题有无其他解法-一题多解?多题一解?通过解题后改进解题过程、探讨知识联系、知识整合、探究规律等一系列思维活动,让学生的思维在解题后继续飞翔,“八方联系,浑然一体,漫江碧透,鱼翔浅底”。这是解题过程中更高一级的思维活动。为了让学生思维继续飞翔,提高解题能力,应该倡导和训练学生进行有效的解题反思。孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。下面是本人对高中数学解题后反思策略的几点看法与同仁们共勉。一、反思解题的合理性和正确性策略积极反思,查缺补漏,确保解题的合理性和正确性。学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!解数学题,有时由于审题不确,概念不清,忽视条件,套用相近知识,考虑不周或计算出错,难免产生这样或那样的错误,即学生解数学题,不能保证一次性正确和完善。所以解题后,必须对解题过程进行回顾和评价,对结论的正确性和合理性进行验证。可是一些同学把完成作业当成是赶任务,解完题目万事大吉,头也不回,扬长而去。由此产生大量谬误,应该引起重视,加以克制,引以为戒。如结论荒唐,引为笑柄;以特殊代替一般;臆造定理,判断无据,以日常概念代替科学概念。以上常见的错误,不胜枚举。由此可见,解题反思的积极意义及其重要性,必须引起师生在教学中的足够重视。例1已知:a0 , b0 , a+b=1,求(a+)2+(b+)2的最小值。解:(a+)2+(b+)2=a2+b2+42ab+44+4=8(a+)2+(b+)2的最小值是8若引导学生回过头来反思其解题过程不难发现,上面的解答中,两次用到了基本不等式a2+b22ab,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的。因此,8不是最小值。事实上,原式= a2+b2+4=( a2+b2)+(+)+4=(a+b)2-2ab+(+)2-+4=(1-2ab)(1+)+4由ab()2= 得:1-2ab1-=,且16,1+17原式17+4= (当且仅当a=b=时,等号成立)(a+)2+(b+)2的最小值是。在这个反思过程中,学生的思维从疏忽到慎密的过程就是一个创新过程。二、反思解题规律,形成结论的策略“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。对每个问题都要寻根问底,能否得到一般性的结果,有规律性的发现?能否形成独到的见解,有自己的小发明?点滴的发现,都能唤起学生的成就感,激发学生进一步探索问题的兴趣。长期的积累,更有利于促进学生认知结构的个性特征的形成,并增加知识的存储量。数学知识有机联系纵横交错,解题思路灵活多变,解题方法途径繁多,但最终却能殊途同归。即使一次性解题合理正确,也未必能保证一次性解题就是最佳思路,最优最简捷的解法。不能解完题就此罢手,如释重负。应该进一步反思,探求一题多解,多题一解的问题,开拓思路,勾通知识,掌握规律,权衡解法优劣,在更高层次更富有创造性地去学习、摸索、总结,使自己的解题能力更胜一筹。一题多解,每一种解法可能用到不同章节的知识,这样一来可以复习相关知识,掌握不同解法技巧,同时每一种解法又能解很多道题,然后比较众多解法中对这一道题哪一种最简捷,最合理?把本题的每一种解法和结论进一步推广,同时既可看到知识的内在联系、巧妙转化和灵活运用,又可梳理出推证恒等式的一般方法和思路:从左到右、从右到左、中间会师、转化条件等,善于总结,掌握规律,探求共性,再由共性指导我们去解决碰到的这类问题,便会迎刃而解, 这对提高解题能力尤其重要。三、反思整合知识,创新设问,寻找解题方法上的创新策略要让学生明白,问题与问题之间不是孤立的,许多表面上看似无关的问题却有着內在的联系,解题不能就题论题,要寻找问题与问题之间本质的联系,要质疑为什么有这样的问题?他和哪些问题有联系?能否受这个问题的启发。将一些重要的数学思想、数学方法进行有效的整合,创造性地设问?让学生在不断的知识联系和知识整和中,丰富认知结构中的内容,体验“创造”带来的乐趣,这对培养学生的创造思维是非常有利的。在问题解决之后,要不断地反思:解题过程是否浪费了重要的信息,能否开辟新的解题通道?解题过程多走了哪些思维回路,思维、运算能否变得简捷?是否拘泥于思维定势,照搬了熟悉的解法?通过这样不断地质疑、不断改进,让解题过程更具有合理性、科学性、简捷性。例2:求证:正四面体和正八面体相邻两侧所成的二面角互补。此题有常规的解题思路:分别求出两个多面体的二面角的值,再求和。这也是一般参考书上的解法。探索解题过程,总感觉这样解题很苯拙,缺少灵气!不能反映两个多面体的巧妙结构。事实上,问题隐含了“结构”这个重要信息,那么,能否把“结构”作为切入点去探究问题呢?四、反思知识的迁移和应用,探究问题所含知识的系统性策略解题之后,要不断地探究问题的知识结构和系统性。能否对问题蕴含的知识进行纵向深入地探究?能否加强知识的横向联系?把问题所蕴含孤立的知识“点”,扩展到系统的知识“面。通过不断地拓展、联系、加强对知识结构的理解,进而形成认知结构中知识的系统性。”例3在椭圆上求一点,使它与两个焦点的连线互相垂直(见第二册上复习参考题6题)分析:本题的求解并不困难,可是教学中如果就此罢手,则会丧失培养学生创新思维的时机,最起码应作下面的延拓和反思训练。反思训练一:椭圆上,何时存在一点与它的两个焦点的连线互相垂直。反思训练二:椭圆上的点何时与两焦点的张角最大?椭圆的有关计算问题,要避免引入变量过多,这时可以考虑引入椭圆的参数方程,并借助于三角形的有关性质来求解,不过还要重视椭圆的自身范围。 解完一道题目后,作为我们教师应积极的引导学生进行反思,这样,有利于深化学生对数学知识和方法的认识,真正领悟到数学的思想和知识的结构,促进其创造性思维能力的发展,从而充分发挥学生的智能和潜能。五、反思学生积极的情感体验和学习动机策略因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰!总之,解题后引导学生不断地对问题进行观察分析、归纳类比、抽象概括,对问题中所蕴含的数学方法、数学思想进行不断地思考并做出新的判断,让学生体会解题带来的乐趣,享受探究带来的成就感。常此以往,逐步养成学生独立思考、积极探究的习惯,并懂得如何学数学,这是学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论