高二数学:常用逻辑用语复习ppt课件.ppt_第1页
高二数学:常用逻辑用语复习ppt课件.ppt_第2页
高二数学:常用逻辑用语复习ppt课件.ppt_第3页
高二数学:常用逻辑用语复习ppt课件.ppt_第4页
高二数学:常用逻辑用语复习ppt课件.ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

常用逻辑用语复习 1 知识网络 2 命题的形式 若P 则q 也可写成 如果P 那么q 的形式 也可写成 只要P 就有q 的形式 通常 我们把这种形式的命题中的P叫做命题的条件 q叫做结论 记做 用语言 符号或式子表达的 可以判断真假的陈述句称为命题 1 1 1命题 其中判断为真的语句称为真命题 判断为假的语句称为假命题 3 一个符号 条件 的否定 记作 读作 非 若p则q 逆否命题 原命题 逆命题 否命题 若q则p 若 p则 q 若 q则 p 二 四种命题 4 结论1 要写出一个命题的另外三个命题关键是分清命题的题设和结论 即把原命题写成 若P则Q 的形式 注意 三种命题中最难写的是否命题 结论2 1 或 的否定为 且 2 且 的否定为 或 3 都 的否定为 不都 5 三 四种命题之间的关系 原命题若p则q 逆命题若q则p 否命题若 p则 q 逆否命题若 q则 p 互逆 互否 互否 互逆 互为逆否 6 2 若其逆命题为真 则其否命题一定为真 但其原命题 逆否命题不一定为真 1 原命题与逆否命题同真假 2 原命题的逆命题与否命题同真假 1 原命题为真 则其逆否命题一定为真 但其逆命题 否命题不一定为真 四 命题真假性判断 结论 7 反证法的一般步骤 假设命题的结论不成立 即假设结论的反面成立 从这个假设出发 经过推理论证 得出矛盾 3 由矛盾判定假设不正确 从而肯定命题的结论正确 反证法 8 充要条件 9 如果命题 若p则q 为假 则记作pq 如果命题 若p则q 为真 则记作pq 或qp 定义 如果 则说p是q的充分条件 q是p的必要条件 10 pq 相当于Pq 即Pq或P q 11 12 认清条件和结论 可先简化命题 将命题转化为等价的逆否命题后再判断 否定一个命题只要举出一个反例即可 判别充要条件问题的 13 充要条件定义 称 p是q的充分必要条件 简称充要条件 显然 如果p是q的充要条件 那么q也是p的充要条件 p与q互为充要条件 也可以说成 p与q等价 14 1 充分且必要条件2 充分非必要条件3 必要非充分条件4 既不充分也不必要条件 各种条件的可能情况 15 2 从逻辑推理关系看充分条件 必要条件 充分非必要条件 必要非充分条件 既不充分也不必要条件 充分且必要条件 16 3 从集合与集合的关系看充分条件 必要条件 充分非必要条件 必要非充分条件 既不充分也不必要条件 一般情况下若条件甲为 条件乙为 4 若A B 则甲是乙的充分且必要条件 17 1 在判断条件时 要特别注意的是它们能否互相推出 切不可不加判断以单向推出代替双向推出 注意点 2 搞清 A是B的充分条件与A是B的充分非必要条件之间的区别与联系 A是B的必要条件与A是B的必要非充分条件之间的区别与联系 注意几种方法的灵活使用 定义法 集合法 逆否命题法 18 2 填写 充分不必要 必要不充分 充要 既不充分又不必要 1 sinA sinB是A B的 条件 2 在 ABC中 sinA sinB是A B的 条件 既不充分又不必要 充要条件 注 定义法 图形分析 19 3 a b成立的充分不必要的条件是 A ac bcB a c b cC a c b cD ac2 bc2 D 4 关于x的不等式 x x 1 m的解集为R的充要条件是 A m 0 B m 0 C m 1 D m 1 C 20 练习2 1 设集合M x x 2 N x x 3 那么 x M或x N 是 x M N 的A 充要条件B必要不充分条件C充分不必要D不充分不必要 B 注 集合法 2 a R a 3成立的一个必要不充分条件是A a 3B a 2C a2 9D 0 a 2 A 21 1 已知p是q的必要而不充分条件 那么 p是 q的 练习3 充分不必要条件 注 等价法 转化为逆否命题 2 若 A是 B的充要条件 C是 B的充要条件 则A为C的 条件A 充要B必要不充分C充分不必要D不充分不必要 22 集合法与转化法 1 已知P 2x 3 1 q 1 x2 x 6 0 则 p是 q的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 2 已知p x 1 2 q x2 5x 6 则非p是非q的 A 充分不必要条件B 必要不充分条件C 充要条件D 既非充分又非必要条件 练习4 A A 23 我们再来看几个复杂的命题 1 10可以被2或5整除 2 菱形的对角线互相垂直且平分 3 0 5非整数 或 且 非 称为逻辑联结词 含有逻辑联结词的命题称为复合命题 不含逻辑联结词的命题称为简单命题 复合命题有以下三种形式 1 P且q 2 P或q 3 非p 24 1 3 1逻辑联结词或 且 非 25 一般地 用逻辑联结词 且 把命题p和命题q联结起来 就得到一个新命题 记作 读作 p且q 26 规定 当p q都是真命题时 是真命题 当p q两个命题中有一个命题是假命题时 是假命题 全真为真 有假即假 p q 27 一般地 用逻辑联结词 或 把命题p和命题q联结起来 就得到一个新命题 记作 规定 当p q两个命题中有一个是真命题时 是真命题 当p q两个命题中都是假命题时 是假命题 28 p q 当p q两个命题中有一个是真命题时 是真命题 当p q两个命题都是假命题时 是假命题 开关p q的闭合对应命题的真假 则整个电路的接通与断开分别对应命题的真与假 29 一般地 对一个命题p全盘否定 就得到一个新命题 记作 若p是真命题 则必是假命题 若p是假命题 则必是真命题 读作 非p 或 p的否定 30 非 命题对常见的几个正面词语的否定 31 1 4全称量词与存在量词 32 短语 对所有的 对任意一个 在逻辑中通常叫做全称量词 并用符号 表示 含有全称量词的命题 叫做全称命题 常见的全称量词还有 对所有的 对任意一个 对一切 对每一个 任给 所有的 等 短语 对所有的 对任意一个 在逻辑中通常叫做全称量词 并用符号 表示 含有全称量词的命题 叫做全称命题 33 符号全称命题 对M中任意一个x有p x 成立 可用符号简记为读作 对任意x属于M 有p x 成立 34 1 4 2存在量词 35 短语 存在一个 至少有一个 在逻辑上通常叫做存在量词 并用符号 表示 含有存在量词的命题 叫做特称命题 常见的存在量词还有 有些 有一个 有的 对某个 等 36 特称命题 存在M中的一个x 使p x 成立 可用符号简记为读做 存在一个x 使p x 成立 37 1 4 3含有一个量词的命题的否定 38 从命题形式上看 这三个全称命题的否定都变成了特称命题 一般地 对于含有一个量词的全称命题的否定 有下面的结论 全称命题p 全称命题的否定是特称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论