大学物理课件静电场ppt课件_第1页
大学物理课件静电场ppt课件_第2页
大学物理课件静电场ppt课件_第3页
大学物理课件静电场ppt课件_第4页
大学物理课件静电场ppt课件_第5页
已阅读5页,还剩102页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第四篇 电磁学 2 真空中的静电场 electrostaticfieldinvacuum 3 静电场 相对于观察者静止的电荷产生的电场两个物理量 电场场强 电势 一个实验规律 库仑定律 两个定理 高斯定理 环流定理 静电场 第九章 4 9 1电荷库仑定律 一 电荷 1 两种电荷 正电荷 负电荷 同号相斥 异号相吸 3 电荷量子化 2 电荷守恒定律 电荷的量子化效应 q ne 在一个与外界没有电荷交换的系统内 正负电荷的代数和在任何物理过程中保持不变 实验证明 微小粒子带电量的变化不是连续的 只能是某个元电荷e的整数倍 4 电荷的相对论不变性 5 二 库仑定律 单位矢量 由施力物体指向受力物体 电荷q1作用于电荷q2的力 真空中两个静止的点电荷之间的作用力 静电力 与它们所带电量的乘积成正比 与它们之间的距离的平方成反比 作用力方向沿着这两个点电荷的连线 SI制 真空电容率 真空介电常数 6 讨论 库仑定律包含同性相斥 异性相吸这一结果 注意 只适用两个点电荷之间 7 所以库仑力与万有引力数值之比为 电子与质子之间静电力 库仑力 为吸引力 电子与质子之间的万有引力为 例 在氢原子中 电子与质子的距离为5 3 10 11米 试求静电力及万有引力 并比较这两个力的数量关系 忽略 解 由于电子与质子之间距离约为它们自身直径的105倍 因而可将电子 质子看成点电荷 8 数学表达式 离散状态 连续分布 静电力的叠加原理作用于某电荷上的总静电力等于其他点电荷单独存在时作用于该电荷的静电力的矢量和 9 静电力的两种观点 电力 应为 电场力 力的传递不需要媒介 不需要时间 超距作用 近距作用 法拉第指出 电力的媒介是电场 电荷产生电场 电场对其他电荷有力的作用 9 2电场强度 10 当电荷静止不动时 两种观点的结果相同 但当电荷运动或变化时 则出现差异 近代物理学证明 场 的观点正确 电场 电荷 电荷 11 一 电场 叠加性 研究方法 能法 引入电势u 力法 引入场强 对外表现 a 对电荷 带电体 施加作用力b 电场力对电荷 带电体 作功 二 电场强度 某处的电场强度的大小等于单位电荷在该处所受到的电场力的大小 其方向与正电荷在该处所收到的电场力方向一致 A 12 三点电荷的电场强度 13 四 场强叠加原理 点电荷系 14 点电荷系的电场 场强在坐标轴上的投影 连续带电体 15 例1 电偶极子 如图已知 q q r l 电偶极矩 求 A点及B点的场强 解 A点设 q和 q的场强分别为和 五 电场强度的计算 16 17 对B点 18 结论 19 例2计算电偶极子在均匀电场中所受的合力和合力矩 已知 解 合力 合力矩 将上式写为矢量式 力矩总是使电矩转向的方向 以达到稳定状态 可见 力矩最大 力矩最小 20 连续带电体的电场 1 电荷体分布 电荷的体密度 2 电荷面分布 电荷的面密度 3 电荷线分布 电荷的线密度 21 例3求一均匀带电直线在O点的电场 已知 a 1 2 解题步骤 1 选电荷元 5 选择积分变量 4 建立坐标 将投影到坐标轴上 2 确定的方向 3 确定的大小 22 选 作为积分变量 23 24 当直线长度 无限长均匀带电直线的场强 讨论 25 例4求一均匀带电圆环轴线上任一点x处的电场 已知 q a x 26 当dq位置发生变化时 它所激发的电场矢量构成了一个圆锥面 由对称性 27 28 讨论 2 当x 0 即在圆环中心处 29 3 当时 这时可以把带电圆环看作一个点电荷这正反映了点电荷概念的相对性 30 例5求均匀带电圆盘轴线上任一点的电场 已知 q R x求 Ep 解 细圆环所带电量为 由上题结论知 31 讨论 1 当R x 无限大均匀带电平面的场强 32 2 当R x 33 例6 两块无限大均匀带电平面 已知电荷面密度为 计算场强分布 两板之间 两板之外 E 0 六 带电体在外电场中所受的力 课堂讨论 如图已知 q d S 求两板间的所用力 解 由场强叠加原理 34 在电场中画一组曲线 曲线上每一点的切线方向与该点的电场方向一致 这一组曲线称为电场线 一 电场线 9 3高斯定理 电场线性质 2 任何两条电力线不相交 1 不闭合 不中断 起于 或 远处 止于 或 远处 35 垂直通过无限小面元的电场线数目d e与的比值称为电力线密度 我们规定电场中某点的场强的大小等于该点的电场线密度 大小 切线方向 电场线密度 总结 36 点电荷的电场线 正电荷 负电荷 37 一对等量异号电荷的电场线 38 一对等量正点电荷的电场线 39 一对异号不等量点电荷的电场线 2q q 40 带电平行板电容器的电场线 41 二 电通量 通过电场中某一面的电场线数称为通过该面的电通量 用 e表示 S为任意曲面 42 均匀电场S与电场强度方向垂直 均匀电场 S法线方向与电场强度方向成 角 43 S为任意闭合曲面 规定 法线的正方向为指向闭合曲面的外侧 44 凡例 45 三 静电场中的高斯定理 在真空中的任意静电场中 通过任一闭合曲面S的电通量 e 等于该闭合曲面所包围的电荷电量的代数和除以 0而与闭合曲面外的电荷无关 46 1 高斯定理的引出 1 场源电荷为点电荷且在闭合曲面内 与球面半径无关 即以点电荷q为中心的任一球面 不论半径大小如何 通过球面的电通量都相等 47 讨论 c 若封闭面不是球面 积分值不变 电量为q的正电荷有q 0条电场线由它发出伸向无穷远 电量为q的负电荷有q 0条电场线终止于它 b 若q不位于球面中心 积分值不变 对于两个无限接近的球面 通过他们的电通量都相同 说明电场线在无电荷处连续 48 2 场源电荷为点电荷系 或电荷连续分布的带电体 高斯面为任意闭合曲面 49 2 高斯定理的理解 a 是闭合面各面元处的电场强度 是由全部电荷 面内外电荷 共同产生的矢量和 而过曲面的通量由曲面内的电荷决定 电荷在闭合曲面外 因为有几条电力线进面内必然有同样数目的电力线从面内出来 50 b 对连续带电体 高斯定理为 表明电力线从正电荷发出 穿出闭合曲面 所以正电荷是静电场的源头 静电场是有源场 表明有电力线穿入闭合曲面而终止于负电荷 所以负电荷是静电场的尾 51 四 高斯定理的应用 1 利用高斯定理求某些电通量 例 设均匀电场和半径为R的半球面的轴平行 计算通过半球面的电通量 52 课堂讨论 q 1 立方体边长a 求 位于一顶点 q 移动两电荷对场强及通量的影响 2 如图讨论 53 若某个电场可找到这样的高斯面 高斯面上的场强大小处处相等 则 S面是一个简单易求的曲面面积 54 2 作高斯面 计算电通量及 3 利用高斯定理求解 55 解 对称性分析 作高斯面 球面 电通量 电量 用高斯定理求解 例1 均匀带电球面的电场 已知R q 0 56 R q 57 解 r R 场强 例2 均匀带电球体的电场 已知q R 58 R r R 电量 高斯定理 场强 电通量 59 均匀带电球体电场强度分布曲线 60 解 具有面对称 高斯面 柱面 例3 均匀带电无限大平面的电场 已知 61 解 场具有轴对称高斯面 圆柱面 例4 均匀带电圆柱面的电场 沿轴线方向单位长度带电量为 1 r R 62 2 r R 令 63 课堂练习 求均匀带电圆柱体的场强分布 已知R 64 9 4静电场的环路定理电势 其中 则 一 静电场力所作的功 65 推广 与路径无关 结论试验电荷在任何静电场中移动时 静电场力所做的功只与路径的起点和终点位置有关 而与路径无关 66 二 静电场的环路定理 即静电场力移动电荷沿任一闭和路径所作的功为零 q0沿闭合路径acbda一周电场力所作的功 在静电场中 电场强度的环流恒为零 静电场的环路定理 67 b点电势能 则a b电场力的功 Wa属于q0及系统 注意 三 电势能 保守力的功 相应势能的减少 所以静电力的功 静电势能增量的负值 68 定义电势差 电场中任意两点的电势之差 电压 四 电势 a b两点的电势差等于将单位正电荷从a点移到b时 电场力所做的功 定义电势 69 将电荷q从a b电场力的功 注意 1 电势是相对量 电势零点的选择是任意的 2 两点间的电势差与电势零点选择无关 3 电势零点的选择 70 根据电场叠加原理场中任一点的 1 电势叠加原理 若场源为q1 q2 qn的点电荷系 场强 电势 各点电荷单独存在时在该点电势的代数和 五 电势的计算 71 1 点电荷电场中的电势 如图P点的场强为 由电势定义得 讨论 对称性 大小 以q为球心的同一球面上的点电势相等 2 电势的计算 72 由电势叠加原理 P的电势为 点电荷系的电势 连续带电体的电势 由电势叠加原理 73 根据已知的场强分布 按定义计算 由点电荷电势公式 利用电势叠加原理计算 电势计算的两种方法 74 例1 求电偶极子电场中任一点P的电势 由叠加原理 其中 75 76 例2 求均匀带电圆环轴线上的电势分布 已知 R q 解 方法一微元法 方法二定义法 由电场强度的分布 77 例3 求均匀带电球面电场中电势的分布 已知R q 解 方法一叠加法 微元法 任一圆环 由图 78 方法二定义法 由高斯定理求出场强分布 由定义 79 课堂练习 1 求等量异号的同心带电球面的电势差已知 q q RA RB 解 由高斯定理 由电势差定义 80 求单位正电荷沿odc移至c 电场力所作的功 81 一 等势面 是电场中电势相等的点组成的曲面 9 5电场强度与电势梯度的关系 相邻等势面间电势差为常数 82 电偶极子的等势面 83 等势面的性质 等势面与电力线处处正交 电力线指向电势降低的方向 令q在面上有元位移 沿电力线移动 a b为等势面上任意两点移动q 从a到b 84 等势面较密集的地方场强大 较稀疏的地方场强小 规定 场中任意两相邻等势面间的电势差相等 课堂练习 由等势面确定a b点的场强大小和方向 已知 85 综合势场图 86 2 电场强度与电势的微分关系 单位正电荷从a到b电场力的功 电场强度沿某一方向的分量 沿该方向电势的变化率的负值 一般 所以 87 的方向与u的梯度反向 即指向u降落的方向 物理意义 电势梯度是一个矢量 它的大小为电势沿等势面法线方向的变化率 它的方向沿等势面法线方向且指向电势增大的方向 梯度算子 88 例1 利用场强与电势梯度的关系 计算均匀带电细圆环轴线上一点的场强 解 89 例2 计算电偶极子电场中任一点的场强 解 B点 x 0 A点 y 0 90 第九章真空中的静电场基本公式 库仑定律 点电荷电场强度 电偶极子延长线上的场强 极矩 电偶极子中垂线上的场强 91 带电直线场强大小 无限长带电直线场强大小 均匀带电细圆环轴线上场强 真空中高斯定理 92 均匀带电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论