第一章 特殊平行四边形 1.2.2 矩形的性质与判定(二).docx_第1页
第一章 特殊平行四边形 1.2.2 矩形的性质与判定(二).docx_第2页
第一章 特殊平行四边形 1.2.2 矩形的性质与判定(二).docx_第3页
第一章 特殊平行四边形 1.2.2 矩形的性质与判定(二).docx_第4页
第一章 特殊平行四边形 1.2.2 矩形的性质与判定(二).docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 特殊平行四边形1.2.2 矩形的性质与判定(二)教学设计 九年一班 林建明一、学生知识状况分析学生在八年级平行四边形一章中,已经认识了平行四边形,同时,通过平行四边形和菱形的学习,进行了对平行四边形和菱形性质和判定的证明,学生已经有了一定的推理论证能力,掌握了独立证明特殊平行四边形性质及判定定理的基本技能;21世纪教育网版权所有在相关知识的学习中,学生已经经历了大量的证明活动,特别是平行四边形的相关证明推理,学生已经逐渐体会到了证明的必要性和证明在解决实际问题时的作用,从而初步具备了证明特殊平行四边形性质和判定定理的能力;同时,在前面的相关活动中,学生已经初步了解了归纳、概括及转化等数学思想方法,大量的活动经验丰富了学生的数学思想,锻炼了学生的能力,使学生具备了在解题中合理运用方法的能力。21二、教学任务分析课本基于目前学生的知识和能力水平,对本课内容提出了具体的学习任务:进一步发展推理论证能力,运用综合法证明矩形的性质和判定定理,进一步体会证明的必要性和作用,体会归纳等数学思想方法。对于本节课的知识,教科书提出的学习任务,重点集中在了学生的能力培养上,在教学时,我们应该把目标上升一个层次,从关注学生是否能证明这些定理提高到关注学生如何找到解题思路,从关注学生是否能顺利证明提高到关注学生是否合理严密的使用数学语言严格证明,从关注学生合作解题提高到让每一个学生都能独立完成证明的过程。能力培养不仅是本节课教学过程中的近期目标,更是为今后学生学习数学知识打下基础的远景目标,能力的培养也必然带动学生情感态度目标的达成。同时,在教学中,还必须注意对不同层次的学生制定不同的教学任务,做到让每一个学生都能在课堂上有所收获。为此,本节课我们要达到的具体教学目标为:【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.三、教学过程分析本节课设计了六个教学环节:第一环节:复习与回顾;第二环节:情境导入,初步认识;第三环节:思考探究,获取新知;第四环节:运用新知,深化理解;第五环节:巩固练习,注重参与;第六环节:课堂小结,布置作业。m第一环节:复习与回顾1、 定义:有一个角是直角的平行四边形叫做 。2、 填写下表:矩形性质角边对角线对称性第二环节:情境导入,初步认识事例引入:一天,小丽和小娟到一个商店准备给今天要过生日的小华买生日礼物,选了半天,她们最后决定买相框送给她,在里面摆放她们三个人的合影,为了相框摆放的美观性,她们选择了矩形的相框,那么用什么方法可以确定她们拿的就是矩形的相框呢?【教学说明】事例引入,激发学生的兴趣.第三环节:思考探究,获取新知活动内容:课前准备小木板和橡皮筋,制作一个如图所示的平行四边形的活动框架。在一个平行四边形活动框架上,用两根橡皮筋分别套在两个相对的顶点上,拉动一对不相邻的顶点时,平行四边形的形状会发生什么变化?活动目的:通过这个活动,首先是学生能够主动地对平行四边形的相关知识有一个系统的回顾和认知,让学生以一种比较有趣的形式对这部分知识进行自主的复习,激发学生对本节知识的学习兴趣。同时,对平行四边形进行归纳,可以使学生清楚地认识到平行四边形与特殊平行四边形之间的关系,为后面连续几节研究特殊的平行四边形提供有力的支持。此外,这个活动,也可以激发学生的积极性和主动性。21教育网活动的注意事项:因为前面对平行四边形及菱形、矩形的学习,学生回答问题比较有针对性,能概括地从“边、角、对角线”等几个方面回答,较有条理。当然也有个别学生语言表述不到位,需老师同学适时点拨、补充、鼓励。矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.第四环节:实际应用,范例教学;1._的平行四边形是矩形._的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.例 如图,在ABCD中,对角线AC与BD相交于点O,ABO是等边三角形,AB = 4cm,求这个ABCD的面积.解:四边形ABCD是平行四边形,OA=OC,OB=OD,又ABO是等边三角形,OA=OB=AB=4,BAC=60.OA=OB=OC=OD=4,AC=BD=2OA=24=8ABCD是矩形.(对角线相等的平行四边形是矩形)ABC=90.(矩形的四个角是直角)在RtABC中,【教学说明】在白板上展示本道题,既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.活动目的:运用刚刚证明的两个定理解决实际问题,进一步发展学生的推理能力,将课本中的问题拆分成三个问题,发散学生思维,从而能将平行四边形菱形和矩形联系起来,分析三者之间的区别和联系。在活动2的证明中,通过让学生找寻不同的解题方法,培养学生的分析能力,深刻体会数学思想的多样性和灵活性。在一题多解的过程中,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力。【出处:21教育名师】活动注意事项:在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。21第五环节:反馈练习,注重参与活动内容: 练习一:1、下列各句判定矩形的说法是否正确?(1)有一个角是直角的四边形是矩形;( )(2)四个角都相等的四边形是矩形; ( )(3)对角线相等的四边形是矩形; ( )(4)对角线互相平分且相等的四边形是矩形;( )(5)一组邻边垂直,一组对边平行且相等的四边形是矩形;( )(6)两组对边分别平行,且对角线相等的四边形是矩形 ( )2如图所示,已知ABCD,下列条件:AC=BD;AB=AD;1=2;ABBC中,能说明ABCD是矩形的有 (填写序号).3.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图1),使 AB=CD, EF=GH。(2)摆放成(如图2)的四边形,则这时窗框的形状是,根据的数学道理是(3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4)说明窗框合格,这时窗框是,根据的数学道理是 图1 图2 图3 图44.如图所示,在ABCD中,AB=6,BC=8,AC=10,求证:四边形ABCD是矩形. 活动目的:通过4道练习题进一步巩固矩形的判定定理,提高学生的逻辑推理能力。 活动注意事项:通过学生的板书,查看存在问题,查漏补缺。鼓励学生一题多解,注重发散思维培养。第六环节:课堂小节,作业布置活动内容:学生互相交流矩形的判定定理,何时选择判定定理,矩形与平行四边形的关系,遇到矩形实际题目时如何分析思路,以及遇到困难时如何克服等。活动目的:鼓励学生结合前面的准备活动畅所欲言自己的感受和收获,让学生在不知不觉中提高自己的推理论证能力,并且对于研究科学需要严谨的作风这一点有深刻的认识。21*cnjy*com活动注意事项:鼓励学生互相补充,畅所欲言,不要由老师替学生总结,特别要关注一些在数学学习中有困难的学生,要通过这个环节来给他们树立信心,同时帮助他们发现困难以便今后更好的解决困难。【来源:21cnj*y.co*m】作业布置不能一概而论,对于不同层次的学生,要注意提出不同的要求。课后习题3.4的要求较低,要求学生都能独立完成,对于有能力的同学,可以提出更高的要求,同时,对于数学学习存在困难的学生,应该要求他们在课后,把课堂上讲过的题目进行再整理,加深印象。21教育名师原创作品四、教学反思本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.1灵活处理教材对于本节课的知识,不能机械地照搬教材内容,而应该对教材内容进行再加工,灵活运用,使教材内容得到升华。【版权所有:21教育】分层次教学对于不同层次的学生,在课堂上的要求要有所不同,一味的提高难度满足有能力的学生和降低难度适应困难学生都不是明智的做法,在教学中选择因材施教,使每个学生都有所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论