




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章 相交线与平行线教材内容本章主要内容是两条直线的位置关系:相交线和平行线,以及平移变换的内容。本章首先研究了相交的情形,探索了两条直线相交所成角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;并着重研究了相交的特殊情形垂直,探索了垂直的性质,给出了点到直线的距离的概念。接着研究了平行的情形,教科书首先引入了一个基本事实(平行公理),以此为出发点探讨了两条直线平行的性质和判定,并给出了两条平行线间的距离的概念,还对命题以及命题的构成作了简单的介绍。最后研究了平移的概念和性质,以及利用平移设计图案和分析解决实际生活中的问题。本章知识是学习线和角的继续,也是学习几何知识的重要基础,以后几乎所有几何图形的学习都用到本章知识。 教学目标知识与技能1、了解两条直线的位置关系有相交与平行两种,理解相交线、平行线、平移的有关概念及性质,会运用这些概念和性质进行简单的推理和计算;2、会用三角板、量角器等工具熟练地画垂线、平行线及有关简单几何图形,逐步培养学生的识图和绘图能力;3、进一步熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号语言表示出来;4、逐步了解几何推理要步步有据,会准确地填写推理的根据,并会作简单的推理。过程与方法1、通过探索、猜测,进一步体会学会推理的必要性,发展学生初步推理能力;2、通过揭示一些概念和性质之间的联系,对学生进行创新精神和实践能力的培养.情感、态度与价值观1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主性和合作精神,激发学生乐于探索的热情。 重点难点垂线的概念与平行线的判定与性质及平移是重点。学会写推理过程和对直线平行的性质和判定的灵活运用是难点。 课时分配(本章约14课时)5.1相交线 4课时5.2平行线 3课时5.3平行线的性质 2课时5.4平移 1课时本章小结 1课时 本章测试 1课时5.1.1 相交线教学目标: 1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。重点难点:对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”是难点。教学过程一、情景导入投影1下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。二、邻补角和对顶角投影2下面是一把剪刀,你能联想到什么几何图形? 1 BB23 BB4OB BBAC BBD BB BB两条直线相交,如图。 BB上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:1和2、1和3、1和4、2和3、2和4、3和4。量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:1和2、1和4、2和3、3和4为一类,它们的和是1800;1和3、2和4为二类,它们相等。第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。具有这种位置关系的角,互为对顶角。思考:投影3下列图形中,1和2是对顶角的是 12121212 A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?四、例题投影4如图,直线a、b相交,1400,求2、3、4的度数。 1 BB23 BB4OB BBAC BBD BB 分析:1和2有什么关系?1和3有什么关系?2和4有什么关系?五、课堂练习课本练习。六、课堂小结1、什么是邻补角?邻补角与补角有什么区别?2、什么是对顶角?对顶角有什么性质?七、作业:课本7面1、2;8面7、8题。 5.1.2 垂线(一)教学目标1、了解垂线的概念;2、理解垂线的性质1;3、会用三角尺或量角器过一点画一条直线垂直于已知直线。重点难点垂线的概念、性质1和画法是重点;画线段和射线的垂线是难点。教学过程一、情景导入投影1如图,取两根木条a、b,将它们钉在一起,固定木条a,转动木条b。当b的位置变化时,a、 b所成的角是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a与b是什么位置关系?(有,当900时;垂直。) abb如图,取两根木条a、b,将它们钉在一起,固定木条a,转动木条b。当b的位置变化时,a、 b所成的角是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a与b是什么位置关系?二、垂线显然,垂直是相交的一种特殊情形,即两条直线相交成900的情况。两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。如图,直线AB垂直于直线CD,记作ABCD,垂足为O。 OB BBAC BBD BB在生产和日常生活中,两条直线互相垂直的情形是很常见的, 你能举一些其它的例子吗?思考:下面所叙述的两条直线是否垂直? 两条直线相交所成的四个角相等; 两条直线相交,有一组邻补角相等; 两条直线相交,对顶角互补.都是垂直的。三、垂线的性质探究: 学生用三角尺或量角器画已知直线l的垂线.(1)画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上的一点A画l的垂线,这样的垂线能画几条?(3)经过直线l外的一点B画l的垂线,这样的垂线能画几条?由画图可知:(1)可以画无数条; (2)可以画一条; (3)可以画一条。这就是说,经过直线上或直线外一点,可以画一条垂线,并且只能画一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。注意:“有”指存在,“只有”指唯一;“过一点”中的“点”在直线上或在直线外。四、课堂练习五、课堂小结六、作业:课本8面3、4、5题, 9面12题。5.1.2 垂线(二) 教学目标1、了解垂线段的概念;2、理解“垂线段最短”的性质;3、体会点到直线的距离的意义, 并会度量点到直线的距离.重点难点“垂线段最短”的性质,点到直线的距离的概念及其简单应用是重点;理解点到直线的距离的概念是难点。教学过程一、情景导入 投影1 如图(课本图5.1-8),在灌溉时,要把河中的水引到农田P处, 如何挖渠能使渠道最短? 说到最短,上学期我们曾经学过什么最短的知识,还记得吗? 两点之间,线段最短.如果把渠道看成是线段,它的一个端点自然是点P,那么另一个端点的位置在什么地方呢?把江河看成直线l,那么原问题就是这样的数学问题:在连接直线l外一点P与直线l 上各点的线段中,哪一条最短?二、垂线的性质2演示:在黑板上固定木条l, l外一点P,木条a一端固定在点P,使之与l相交于点A。_l_P_a_A左右摆动木条a, l与a的交点A随之变动,线段PA 的长度也随之变化,a与l的位置关系怎样时,PA最短?a与l垂直时,PA最短。这时的线段PA叫做垂线段。投影2画出PA在摆动过程中的几个位置,如图,点A1、A2、A3在l上,连接PA1、PA2、PA3,PO l,垂足为O,用叠合法或度量法比较PO、PA1、PA2、PA3的长短,可知垂线段PO最短。 lPOA2A1A3连接直线外一点与直线上各点的所有线段中,垂线段最短, 简单说成:垂线段最短.二、点到直线的距离我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO就是点P到直线l的距离。注意:点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离。三、课堂练习投影31、判断正确与错误,如果正确,请说明理由,若错误,请订正. (1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如图,线段AE是点A到直线BC的距离. (3)如图,线段CD的长是点C到直线AB的距离. _E_D_C_B_A _b_a_C_B_A 1题图 2题图投影42已知直线a、b,过点a上一点A作ABa,交b于点B,过B作BCb交a 上于点C.请说出线段AE的长是哪一点到哪一条直线的距离?CD的长是哪一点到哪一条直线的距离?3、课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长?四、课堂小结1、垂线段、点到直线的距离概念;2、垂线的性质2及应用.作业:课本8面6题,9面10题、13题。 5.1.3 同位角、内错角、同旁内角 教学目标1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角.重点难点同位角、内错角、同旁内角的概念与识别是重点;识别同位角、内错角、同旁内角是难点。教学过程 一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。我们来研究那些没有公共顶点的两个角的关系。 56871与2、4与8、5与6、3与7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。同位角形如字母“F”。3与2、4与6的位置有什么共同的特点?在截线的两旁,被截直线之间。具有这种位置关系的两个角叫做内错角.内错角形如字母“N”。3与6、4与2的位置有什么共同的特点?在截线的同旁,被截直线之间。具有这种位置关系的两个角叫做同旁内角.同旁内角形如字符“匚”。思考:这三类角有什么相同的地方?(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。三、例题例 如图,直线DE,BC被直线AB所截,(1)1与2、1与3、1与4各是什么角?为什么?(2)如果1=4,那么1与2相等吗?1与3互补吗?为什么? 31BD4ACE2解:(1)1与2是内错角,因为1与2在直线DE,BC之间,在截线AB的两旁;1与3是同旁内角,因为1与3在直线DE,BC之间,在截线AB的同旁;1与4是同位角,因为1与4在直线DE,BC的同方向,在截线AB的同方向。(2)如果1=4,又因为2=4,所以1=2;因为3+4=1800,又1=4,所以1+3=1800,即1与3互补。四、课堂练习1、课本7面练习1;2、投影2指出图中所有的同位角、内错角、同旁内角; ABCD3、课本7面练习2。作业:课本9面11题.5.2.1平行线教学目标1、了解平行线的概念,理解同一平面内两条直线间的位置关系;2、掌握平行公理及平行线的画法。重点难点平行线的概念、画法及平行公理是重点;理解平行线的概念和根据几何语言画出图形是难点。教学过程 一、情景导入我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:投影1 双杆上面的两根横杆、支撑横杆的直干它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题。二、平行线演示:分别将木条a、b与木条c钉在一起,,并把它们想象成三条直线。转动a,直线a从在c的左侧与直线b相交逐步变为在右侧与b相交。想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?abcabcabc有,这时直线a与直线b左右两旁都没有交点。同一平面内, 不相交的两条直线叫做平行线.直线AB与直线CD平行,记作“ABCD”.注意:“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;“不相交”就是说两条直线没有公共点。归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画。相交和平行两种。注意:这里所指的两条直线是指不重合的直线。三、平行公理再来看上面的实验,想象一下,在转动木条a的过程中,有几个位置能使a与b平行?有且只有一个位置使a与b平行。 _a_C_B 如图,过点B画直线a的平行线,能画几条?试试看。 只能画一条。从实验和作图,我们可以得到怎样的事实?经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理。在上图中,过点C画直线a的平行线,它与过点B画的的平行线平行吗?试试看。 过点C画的直线a的平行线与过点B画的直线a的平行线相互平行。这说是说,如果两条直线都与第三条直线平行,那么这条直线也互相平行.符号语言:ba,ca bc.如果b与c不平行,那么经过直线外一点就有两条直线与已知直线平行,所以上面的结论是平行公理的推论。四、课堂小结1、什么是平行线?“平行”用什么表示?2、平面内两条直线的位置关系有哪些?3、平行公理及推论是什么?作业:课本15面3题,16面8题、9题 17面11题。5.2.2 平行线的判定(一) 教学目标经历探索两直线平行条件的过程,理解两直线平行的条件.重点难点探索两直线平行的条件是重点,理解“同位角相等,两条直线平行”是难点。教学过程 一、情景导入.投影1如图1,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行? 5687 图1 图2 要解决这个问题,就要弄清楚平行的判定。二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本13面图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。简化图5.2-5,得图3. _G_H_P_F_E_2_1_D_C_B_A图3 1与2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然1与2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单地说:同位角相等,两条直线平行.符号语言: 1=2 ABCD.如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。投影2如图,(1)如果2=3,能得出ab吗?(2)如果241800,能得出ab吗? 32bac41 (1)2=3(已知)3=1(对顶角相等)1=2 (等量代换) ab(同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:2=3 ab.(2) 4+2=180,4+1=180 (已知) 2=1 (同角的补角相等) ab. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言: 4+2=180 ab.四、课堂练习1、课本14面练习1,补充(3)由A+ABC1800可以判断哪两条直线平行?依据是什么?2、课本15面2、3题。五、课堂小结怎样判断两条直线平行?作业:15面1、2题; 15、16面4、5、6。 5.2.2 平行线的判定(二) 教学目标1、掌握直线平行的条件,并能解决一些简单的问题;2、初步了解推理论证的方法,会正确的书写简单的推理过程。重点难点直线平行的条件及运用是重点;会正确的书写简单的推理过程是难点。教学过程 一、复习导入 我们学习过哪些判断两直线平行的方法?投影1(1)平行线的定义:在同一平面内不相交的两条直线平行。(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、例题 投影2 例 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? _c_b_a_2_1 答:这两条直线平行。 ba ca(已知) 1=2=90(垂直的定义) bc(同位角相等,两直线平行)你还能用其它方法说明bc吗? 方法一: 如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. _c_b_a_2_1 _c_b_a_2_1 (1) (2)注意:本例也是一个有用的结论。例2 投影3 如图,点B在DC上,BE平分ABD,DBE=A,则BEAC,请说明理由。 ABCDE 分析:由BE平分ABD我们可以知道什么?联系DBE=A,我们又可以知道什么?由此能得出BEAC吗?为什么?解:BE平分ABD ABE=DBE(角平分线的定义) 又DBE=A ABE=A(等量代换) BEAC(内错角相等,两直线平行)注意:用符号语言书写证明过程时,要步步有据。四、课堂练习投影21、如图,1=2=55,试说明直线AB,CD平行? 3ABCDEF21 decba3412 1题 2题2、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180,则a与c平行吗?为什么?作业:课本16面7,17面12题(提示:画图说明)。补充题:如图所示,已知1=2,AB平分DAB,试说明DCAB.5.3.1 平行线的性质教学目标 经历探索直线平行的性质的过程,掌握平行线的性质,并能用它们进行简单的推理和计算.重点难点 直线平行的性质是重点;区别平行线的性质和判定,综合运用平行线的性质和判定是难点。教学过程一、复习导入怎样判定两条直线平行?这就是说,利用同位角、内错角和同旁内角可以判定两条直线平行,反过来,两条直线平行,同位角、内错角和同旁内角各有什么关系呢?二、平行线的性质利有练习本上的横线画两条平行线ab,然后画一条直线c与这两条直线相交,标出所形成的八个角,如图。 5786 度量这些角的度数,把结果填入表内:角12345678度数哪些角是同位角?它们具有怎样的数量关系? 哪些角是内错角?它们具有怎样的数量关系?哪些角是同旁内角?它们具有怎样的数量关系?再任意画一条截线d,同样度量并计算各个角的度数,这种数量关系还成立吗?那么由此你得到怎样的事实:1、平行线被第三条直线所截,同位角相等,简单说成:两直线平行, 同位角相等. 2、平行线被第三条直线所截,内错角相等,简单说成:两直线平行, 内错相等. 3、平行线被第三条线所截,同旁内角互补,简单说成:两直线平行, 同旁内角互补.思考:平行线的性质与平行线的判定有什么关系?由角的数量关系得出两条直线平行是“判定”,由两条直线平行得出角的数量关系是“性质”,因此,两者的条件和结论正好互换。你能根据性质1,推出性质2吗?如上图,ab 1=2(两直线平行,同位角相等) 又3=1(对顶角相等) 2=3.对于性质3,你能写出类似的推理过程吗?三、例题如图是一块梯形铁片的线全部分,量得D=100,C=115, 梯形另外两个角分别是多少度? 分析:梯形有什么特征?A与D、B 与C有什么关系?解:ABCD A+D=1800,B +C=1800A=1800D=18001000=800 _D_C_B_AB=1800C=18001150=650 答:梯形的另外两个角分别是800,650。四、课堂练习课本20面练习1、2。五、课堂小结这节课我们学习了平行线的性质,要注意平行线的性质与平行线的判定的区别与联系,以便我们能准确地运用。 作业: 课本22面1、3、3题,23面4、5题。 5.3.2命题、定理教学目标 1、了解命题、定理、证明的含义,会区分命题的题设和结论。重点难点命题及组成是重点;区分命题的题设和结论是难点。教学过程一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断。数学中象这类对某件事情作出判断的语句还很多,值得我们研究。二、命题再来看几个句子:投影1 如果两条直线都与第三条直线平行,那么这两条直线也互相平行; 等式两边都加同一个数,结果仍是等式; 相等的角是对顶角;如果两条直线不平行,那么内错角不相等;同位角相等。 这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题。思考:投影2 下列语句是命题吗?为什么? 蓝蓝的天空白云飘;这不是坑人吗?画ABCD。不是命题。因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断。二、命题的构成命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。命题常可以写成“如果那么”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论。例如,上面命题中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论。有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果那么”的形式。例如,上面命题可改写成:如果两个角是同位角,那么这两个角相等。请你把上面的命题、改写成“如果那么”的形式,并指出它的题设和结论。三、命题的真假上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立。要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即可。探究:投影3 下面的命题是真命题,还是假命题?1、锐角小于它的余角;(是假命题,如650角的余角是350,而650大于350。)2、若a2b2则,ab. (是假命题,如当a=3,b=2时a2b2,而ab四、课堂练习投影41、判断下列句子是不是命题:(1)平行用符号“”表示;(2)你喜欢数学吗?(3)熊猫没有翅膀。2、将下列命题改写成“如果那么”的形式,并指出它的题设与结论。(1)等角的补角相等;(2)负数之和仍为负数;(3)两点确定一条直线。3、如图,如果ACDE,1=2,那么ABCD,这个命题是真命题,还是假例题? ABCDE12 五、课堂小结1、命题及构成;2、公理、定理、证明的概念.作业:课本23面6、7题;24面8、11、12题。课外完成24面9、10题。 54 平 移教学目标经历欣赏、观察、分析图形的过程,理解平移的概念,探索平移的性质;通过动手操作,学会平移后图形的画法;学会用运动的观点分析问题,在欣赏和操作中获得数学美的熏陶.重点难点平移的性质和作平移后的图形是重点;作平移后的图形是难点。教学过程一、情景导入仔细观察下面的图案,它们有什么共同特点?它们都是由一些相同的部分组成的。能否根据其中相同的部分绘制出整个图案?若能,请你想象可以怎么绘制?投影2 这种绘制方法实际上就是平移。那么究竟什么是平移?平移有哪些性质?下面我们就来探讨一下。二、平移的性质探究:如何在一张半透明的纸上,画出一排形状大小如图5.4-2的雪人? 投影3 可以把半透明的纸盖在图5.4-2上,先描出一个雪人,然后按同一方向陆续移动这张纸,再描出第二个、第三个观察:在所画的相邻两个雪人中,找出鼻尖A ,帽顶B,纽扣C的对应点A、B、C,连接这些对应点,观察得出的线段,它们的位置、长度有什么关系?投影45 雪人甲雪人乙可以发现:AABBCC,且AA=BB=CC请你用平推三角尺的方法验证三条线段是否平行, 用刻度尺度量三条线段是否相等. 再作出一些其他对应点的线段,它们是否仍有前面的关系?归纳:投影6把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. 新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.三、平移的概念一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.注意:图形平移的方向,不一定是水平的,也不一定是竖直的,如图投影78。 平移在我们日常生活中是很常见的.利用平移可以制作出很多美丽的图案,请欣赏:投影9 你能举出生活中一些利用平移的例子吗?如在笔直公路上跑着的汽车,工厂里传送带上的产品,大厦中电梯的升降投影1012四、平移作图例投影13 如图,平移三角形ABC,使点A移动到点A.画出平移后的三角形ABC. _A_C_B_A _C_B_A_C_B_A分析:“点A移动到点A ”这句话告诉我们什么?平移的方向和距离。解:连接AA,过点B作AA的平行线l,在l上截取BB =AA,点B 就是点B的对应点.类似地,你能作出点C的对应点C 吗?连接AB,BC,AC,则ABC 就是平移后的三角形.反思:1、作平移后的图形必须知道平移的方向和距离;2、作平移后的图形只须作出几个关键点。五、课堂练习1、投影14下图中,图形(2)可以通过图形(1)平移得到吗? (1) (2) (1) (2) (1) (2) (1) (2) 2、投影15 在下面的六幅图案中,(2)(3)(4)(5)(6)中的哪个图案可以通过平移图案(1)得到? 3、投影16将图中的小船向左平移四格.六、课堂小结投影171、什么是平移?平移的条件是什么?2、平移有哪些性质?3、平移作图形的依据是什么?怎样作平移后的图形?作业:课本30-31面1、2、3、4、5、6题。本章小结一、知识结构相交线平行线两条直线相 交两条直线被第三条直线所截邻补角、对顶角垂线及其性质对顶角相等点到直线的距离同位角、内错角、同旁内角平行公理平 移判 定性 质 二、回顾与思考1、在平面内,不重合的两条直线的位置关系有哪几种?2、下面是本章学到的一些数学名词,你能用自己的语言给它们一个简短的描述吗?你能画出一个图形来表示它们吗?对顶角 邻补角 垂直 平行 同位角 内错角 同旁内角 平移3、什么叫垂线?什么叫垂线段?垂线有哪些性质?4、什么是两点间的距离?什么是点到直线的距离?4、怎样判断两条直线平行?平行线有什么性质?平行线的性质和直线平行的判定方法有什么关系?5、图形平移时,图形的大小和形状有什么关系?连接各对应点的线段有什么关系?6、什么叫命题?命题的结构是什么?怎样确定一个命题是真命题还是假命题? 三、例题导引例1 如图,已知ABCD,A=C,用三种方法说明BCAD。 例2 BCD,直线EF分别交AB,CD于E,F,EG平分BEF,若1=72,求2的度数。 ABCD GFEDCBA12例3 如图所示,已知ABCD,探索下列二个图形中P与A,C的关系。PDCBA PDCBA四、布置作业课本35面复习题5。 相交线与平行线 单元测试 一、相信你的选择(每小题3分,共30分) 1、在同一平面内,两条直线的位置关系可能是( )。 A、相交或平行 B、相交或垂直 C、平行或垂直 D、不能确定 2、如图1,下列说法错误的是( )。 A、A与C是同旁内角 B、1与3是同位角 C、2与3是内错角 D、3与B是同旁内角 3、三条直线相交于一点,构成的对顶角共有( )。 A、3对 B、4对 C、5对 D、6对 4、如图2,120,AOCO,点B、O、D在同一直线上,则2的度数为( )。 A、70 B、20 C、110 D、1605、在55方格纸中将图3-1中的图形N平移后的位置如图3-2所示,那么下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版水电设施维修保养及安全检查合同
- 2025《合同法》深度解析与案例分析(附详细解答)
- 2025企业安全生产管理合同书示范文本
- 语法比较级和最高级课件
- 供应链风险管理评估工具全面覆盖
- 多功能销售数据统计分析平台
- 商场租赁及运营管理协议
- 红河色彩知识培训课件
- 红楼梦课件教学内容
- 诗经教学课件介绍
- 10kA配电站房标准建设规范及施工工艺
- 2024-2025学年陕西省西安西工大附中高一(上)月考物理试卷(含答案)
- 公司价值观与伦理管理制度
- 2024-2025学年初中音乐七年级上册(2024)苏少版(2024)教学设计合集
- DB34T 3709-2020 高速公路改扩建施工安全作业规程
- 初中道德与法治教研组工作计划
- 企业级IPv6网络改造及升级服务合同
- 《立在地球边上放号》《峨日朵雪峰》联读课件32张高中语文必修上册
- 家具厂封边技能培训
- 重点群体人员本年度实际工作时间表
- DBJ50-T-386-2021 建筑施工现场扬尘控制标准
评论
0/150
提交评论