数据挖掘在电子商务中的应用.doc_第1页
数据挖掘在电子商务中的应用.doc_第2页
数据挖掘在电子商务中的应用.doc_第3页
数据挖掘在电子商务中的应用.doc_第4页
数据挖掘在电子商务中的应用.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数据挖掘在电子商务中的应用姓名:王菲学号:06051105班级:计科061系别:计算机科学与技术数据挖掘在电子商务中的应用随着网络技术和数据库技术的成熟,全球传统商务正经历一次重大变革,向电子商务全速挺进。电子商务是商业领域的一种新兴商务模式,它是以网络为平台,以现代信息技术为手段,以经济效益为中心的现代化商业运转模式,其最终目标是实现商务活动的网络化、自动化与智能化。电子商务的产生改变了企业的经营理念、管理方式和支付手段,给社会的各个领域带来了巨大的变革。随着网络技术的迅猛发展和社会信息化水平的提高,电子商务显示出巨大的市场价值和发展潜力。当电子商务在企业中得到应用时, 企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用的信息和知识,为企业创造更多潜在的利润,数据挖掘概念就是从这样的商业角度开发出来的。数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。1、电子商务和数据挖掘简介电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和开展商务业务活动。目前国内已有网上商情广告、电子票据交换、网上订购,网上银行、网上支付结算等多种类型的电子商务形式。电子商务正以其成本低廉、方便、快捷、安全、可靠、不受时间和空间的限制等突出优点而逐步在全球流行。数据挖掘(DataMining)是伴随着数据仓库技术的发展而逐步完善起来的。数据挖掘主要是为了帮助商业用户处理大量存在的数据,发现其后隐含的规律性,同时将其模型化,来完成辅助决策的作用。它要求从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取人们事先不知道的但又是潜在有用的信息和知识。数据挖掘的过程有时也叫知识发现的过程。电子商务中Web信息的多样性决定了挖掘任务的多样性。按照Web处理对象的不同,Web数据挖掘可以分为以下三种类型: (1)Web内容挖掘(Web Content Mining):可分为Web页面内容挖掘和搜索结果挖掘。前者指的是对Web页面上的数据进行挖掘。而后者指的是以某一搜索引擎为基础,对已搜索结果的挖掘,以得到更精确有用的信息。Web内容挖掘常用的方法有WebOQL和Ahoy。 (2)Web结构挖掘(Web Structure Mining):可分为超链接挖掘、内容挖掘和URL挖掘。整个Web空间里,有用的知识不仅包含在Web页面的内容之中,而且包含在页面的结构之中。Web结构挖掘是挖掘Web潜在的链接结构模式,是对Web页面超链接关系、文档内部结构、文档URL中的目录途径结构的挖掘。Page2Rank方法就是利用文档间链接信息来查找相关的Web页。 (3)Web使用挖掘(Web Usage Mining):可分为一般访问模式挖掘和个性化服务模式挖掘。它是从Web的访问记录中抽取感兴趣的模式。WWW 中的每个服务器都保留了访问日志,记录了关于用户访问和交互的信息。分析这些数据可以帮助理解用户的行为,从而改进站点的结构,或为用户提供个性化的服务。2、电子商务中的数据挖掘电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即Web文档)和行为(即We服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术涉及到Internet技术学、人工智能、计算机语言、信息学、统计学等多个领域。由于数据挖掘能带来显著的经济效益,它在电子商务中(特别是金融业、零售业和电信业)应用也越来越广泛。在金融领域,管理者可以通过对客户偿还能力以及信用的分析,进行分类,评出等级。从而可减少放贷的麻木性,提高资金的使用效率。同时还可发现在偿还中起决定作用的主导因素,从而制定相应的金融政策。更值得一提的是通过对数据的分析还可发现洗黑钱以及其它的犯罪活动。在零售业,数据挖掘可有助于识别顾客购买行为,发现顾客购买模式和趋势,改进服务质量,取得更好的顾客保持力和满意程度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。电信业已经迅速地从单纯的提供市话和长话服务演变为综合电信服务,如语音、传真、寻呼、移动电话、图像、电子邮件、计算机和WEB数据传输以及其它的数据通 信服务。电信、计算机网络、因特网和各种其它方式的通信和计算的融合是目前的大势所趋。而且随着许多国家对电信业的开放和新型计算与通信技术的发展,电信 市场正在迅速扩张并越发竞争激烈。因此,利用数据挖掘技术来帮助理解商业行为、确定电信模式、捕捉盗用行为、更好的利用资源和提高服务质量是非常有必要的。分析人员可以对呼叫源、呼叫目标、呼叫量和每天使用模式等信息进行分析,还可以通过挖掘进行盗用模式分析和异常模式识别,从而可尽早发现盗用,为公司减少损失。利用Web数据挖掘技术可以在站点上挖掘出来的知识模式有以下几个:路径分析、关联规则的发现、序列模式的发现、分类规则的发现、聚类分析等。Web数据挖掘在电子商务中的具体应用有以下几点:(1)发现潜在客户,用户在网站上的浏览行为反映了用户的爱好和购买意向。对一个电子商务网站来说,了解、关注在册客户群体非常重要,但从众多的访问者中发现潜在客户群体也同样非常关键。假如发现某些客户为潜在客户群体,就可以对这类客户实施一定的策略使他们尽快成为在册客户群体。对一个电子商务网站来说也许就意味着订单数的增多、效益的增加。(2)提供优质个性化服务,提高客户忠诚度,在电子商务中,传统客户与销售商之间的空间距离对客户来说己经不复存在,客户从一个电子商务网站转换到竞争对手那边,只需点击几下鼠标即可。网站的内容和层次、用词、标题、奖励方案、服务等任何一个地方都有可能成为吸引客户、同时也可能成为失去客户的因素。通过对客户访问信息的挖掘,就能知道客户的浏览行为,从而识别用户的忠实度、喜好、满足度,了解客户的爱好及需求,动态地调整Web页面以满足客户的需要。在Internet上的电子商务中一个典型的序列,恰好就代表了一个购物者以页面形式在站点上导航的行为,所以可运用数据挖掘中的序列模式发现技术进行挖掘。(3)改进站点设计,对Web站点的链接结构的优化可从三方面来考虑:通过对WebLog的挖掘,发现用户访问页面的相关性,从而对密切联系的网页之间增加链接,方便用户使用。利用路径分析技术判定在一个Web站点中最频繁的访问路径,可以考虑把重要的商品信息放在这些页面中,改进页面和网站结构的设计,增强对客户的吸引力,提高销售量。通过对WebLog的挖掘,发现用户的期望位置。假如在期望位置的访问频率高于对实际位置的访问频率,可考虑在期望位置和实际位置之间建立导航链接,从而实现对Web站点结构的优化。(4)聚类客户,许多企业都对企业的客户、市场、销售、服务与支持信息进行深层次发掘和分析,对客户价值进行分类,发现新的市场机会,增加收入和利润。在电子商务中客户聚类是一个重要的方面。通过分组具有相似浏览行为的客户并分析组中客户的共同特征,可以帮助电子商务的组织者更好地了解自己的客户,及时调整页面及页面内容使商务活动能够在一定程度上满足客户的要求,向客户提供更适合、更面向客户的服务,使商务活动对客户和销售商来说更具意义。 3、电子商务中挖掘信息的目标(1)帮助企业确定营销机制在电子商务中,商业信息来自各个渠道,这些数据信息经过数据挖掘处理技术进行处理后,可从中得到用于特定消费群体或个人定向营销的决策信息,以确定电子商务的营销机制。基于数据挖掘的电子商务营销,常常可以向消费者发出与以前的消费行为相关的推销材料,数据挖掘的电子商务营销对于我国当前情况下的市场竞争具有启发意义。经常可以看见繁华商业街上一些厂商对行人不分对象的散发大量商品宣传广告。其结果是不需要的人随手丢弃,而需要的人未必能够得到。如果家电维修服务公司向在商店中刚购买家电的消费者邮寄维修服务广告。药品厂商向刚在医院门诊就医的特定病人邮寄广告,其效果肯定比漫无目的的营销效果要好很多。(2)帮助电子商务网站创造效益建立一个电子商务网站并不困难,困难在于如何让电子商务网站创造效益。要想有效益就必须吸引客户,增加客户的忠诚度。电子商务业务的竞争比传统业务的竞争更为激烈,原因有很多方面其中一个因素就是客户从一个电子商务网站转换到竞争对手那边只需要点击几下鼠标即可。网站的内容和层次、用词、标题、奖励方案、服务等都有可能成为吸引客户或失去客户的因素。电子商务网站每天都可能有上百万次的在线交易。生成大量的记录文件和登记表,如何对这些数据进行分析和挖掘充分了解客户的喜好、购买模式,设计出满足不同客户群体需要的个性化网站,进而增加其竞争力,变得势在必行。4、数据挖掘在电子商务中的作用数据挖掘技术之所以可以服务电子商务,是因为它能够挖掘出活动过程中的潜在信息以指导电子商务营销活动。在电子商务中其作用有4个方面:(1)挖掘客户活动规律,针对性的在电子商务平台下以提供“个性化”的服务。(2)可以在浏览电子商务网站的访问者中挖掘出潜在的客户。(3)优化电子商务网站巾的信息导航,方便客户浏览。(4)通过电子商务访问者的活动信息的挖掘,可以更加深入的了解客户需求。通过收集、加工和处理涉及消费者消费行为的大量信息。确定特定消费群体或个体的兴趣、消费习惯、消费倾向和消费需求,进而推断出相应消费群体或个体未来的消费行为,然后对所识别出来的消费群体进行特定内容的定向营销,节省成本,提高效率,从而为企业带来更多的利润。5、数据挖掘技术在电子商务中的应用 (1)挽留老顾客,挖掘潜在客户通过Web挖掘,电子商务的经营者可以获知每位访问者的个人爱好,充分地了解客户的需要,根据每一类顾客的独特需求提供定制化的产品,并根据需求动态地向客户做页面推荐,调整Web页面,提高客户满意度,延长客户驻留的时间,最终达到留住客户的目的。通过挖掘Web日志记录,可以先对已经存在的访问者进行分类,然后从它的分类判断出某个新客户是否是潜在的客户。 (2)制定产品营销策略,优化促销活动 通过对商品访问情况和销售情况进行挖掘,企业能够获取客户的访问规律,确定顾客消费的生命周期,根据市场的变化,针对不同的产品制定相应的营销策略。 (3)降低运营成本,提高企业竞争力 电子商务的经营者通过Web数据挖掘,可以得到可靠的市场反馈信息,认真分析顾客的将来行为,进行有针对性的电子商务营销活动;可以根据关心某产品的访问者的浏览模式来决定广告的位置,增加广告针对性,提高广告的投资回报率,从而降低运营成本,提高企业竞争力。 (4)提高站点点击率,完善电子商务网站设计 通过挖掘客户的行为记录和反馈情况为站点设计者提供改进的依据,进一步优化网站组织结构以提高网站的点击率。比如利用关联规则的发现,可以针对不同客户动态调整站点结构,使客户访问的有关联的文件间的链接更直接,让客户容易地访问到想要的页面,就能给客户留下好的印象,增加下次访问的机率。同时对网站上各种数据的统计分析有助于改进系统性能,增强系统安全性,并提供决策支持。 6、结语 电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。电子商务领域具有丰富的信息资源,为数据挖掘的应用开辟了广阔的应用舞台。数据挖掘将为电子商务提供有力的技术支持,极大地促进电子商务的发展与普及,推动电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论