




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2直接证明与间接证明考纲展示1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2了解反证法的思考过程和特点考点1分析法分析法(1)定义:从要证明的_出发,逐步寻求使它成立的_,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法(2)框图表示:.答案:(1)结论充分条件(1)教材习题改编命题“对于任意角,cos4sin4cos 2”的证明过程“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos 2”应用了_答案:综合法解析:因为证明过程是“从左往右”,即由条件到结论,所以该命题的证明过程应用了综合法(2)教材习题改编用分析法证明不等式0)时,最后推得的显然成立的最简不等式是_答案:04解析:要证2,即证2n424(n2),即证n2,即证n24n(n2)2,即证04.证明方法的两个易错点:分析法证明的书写格式证明不等式2,是否可以把“2”作已知条件?_.(填“是”或“否”)答案:否解析:要证明不等式2,只需证明不等式()2(2)2,逐步推出结论成立的充分条件,不能把“a,且B60,所以A150),所以C90,即ABC是直角三角形.证明的两种常见方法:综合法;分析法(1)设alg 2lg 5,bex(xb应选用的方法是_答案:综合法解析:当x0时,bex, 0bb.故应选用综合法(2)证明不等式最合适的方法是_答案:分析法解析:要证明不等式,只需证明不等式()2b,那么”,假设内容应是_答案:假设结论不成立,将结论否定,即 .典题3设an是公比为q的等比数列(1)推导an的前n项和公式;(2)设q1,证明数列an1不是等比数列(1)解设an的前n项和为Sn,当q1时,Sna1a1a1na1;当q1时,Sna1a1qa1q2a1qn1,qSna1qa1q2a1qn,得(1q)Sna1a1qn,Sn,Sn(2)证明假设an1是等比数列,则对任意的kN*,(ak11)2(ak1)(ak21),即a2ak11akak2akak21,即aq2k2a1qka1qk1a1qk1a1qk1a1qk1.a10,2qkqk1qk1.q0,q22q10,q1,这与已知矛盾假设不成立,故an1不是等比数列点石成金反证法证明问题的三步骤(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误既然原命题结论的反面不成立,从而肯定了原命题成立(命题成立)已知xR,ax2,b2x,cx2x1,试证明a,b,c至少有一个不小于1.证明:假设a,b,c均小于1,即a1,b1,c1,则有abc3,而abc2x22x32233,两者矛盾,所以假设不成立,故a,b,c至少有一个不小于1.方法技巧分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用易错防范1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)”“即证”“只需证”等,逐步分析,直至一个明显成立的结论出现为止2利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的 真题演练集训 12016新课标全国卷有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_答案:1和3解析:由丙所言可能有两种情况一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况故甲持有“1和3”22014天津卷已知q和n均为给定的大于1的自然数设集合M0,1,2,q1,集合Ax|xx1x2qxnqn1,xiM,i1,2,n(1)当q2,n3时,用列举法表示集合A;(2)设s,tA,sa1a2qanqn1,tb1b2qbnqn1,其中ai,biM,i1,2,n.证明:若anbn,则st.(1)解:当q2,n3时,M0,1,Ax|xx1x22x322,可得,A0,1,2,3,4,5,6,7(2)证明:由s,tA,sa1a2qanqn1,tb1b2qbnqn1,ai,biM,i1,2,n及anbn,可得st(a1b1)(a2b2)q(an1bn1)qn2(anbn)qn1(q1)(q1)q(q1)qn2qn1qn110,所以st. 课外拓展阅读 反证法应用举例反证法的应用是高考的常考内容,题型为解答题,难度适中,为中高档题,考查方向主要有以下几个方面:一证明否定性命题典例1已知数列an的前n项和为Sn,且满足anSn2.(1)求数列an的通项公式;(2)求证:数列an中不存在三项按原来顺序成等差数列(1)解当n1时,a1S12a12,则a11.又anSn2,所以an1Sn12,两式相减得an1an,所以an是首项为1,公比为的等比数列,所以an.(2)证明假设存在三项按原来顺序成等差数列,记为ap1,aq1,ar1(pqr,且p,q,rN*),则2,所以22rq2rp1.(*)又因为pqr,所以rq,rpN*.所以(*)式左边是偶数,右边是奇数,等式不成立所以假设不成立,原命题得证解题模板用反证法证明问题的一般步骤二证明存在性问题典例2若f(x)的定义域为a,b,值域为a,b(a2),使函数h(x)是区间a,b上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由解(1)由已知得g(x)(x1)21,其图象的对称轴为x1,区间1,b在对称轴的右边,所以函数在区间1,b上单调递增由“四维光军”函数的定义可知,g(1)1,g(b)b,即b2bb,解得b1或b3.因为b1,所以b3.(2)假设函数h(x)在区间a,b(a2)上是“四维光军”函数,因为h(x)在区间(2,)上单调递减,所以有即解得ab,这与已知矛盾故不存在易错警示利用反证法进行证明时,一定要对所要证明的结论进行否定性的假设,并以此为条件进行归谬,得到矛盾,则原命题成立三证明唯一性命题典例3已知四棱锥SABCD中,底面是边长为1的正方形,又SBSD,SA1.(1)求证:SA平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF平面SAD?若存在,确定F点的位置;若不存在,请说明理由(1)证明由已知,得SA2AD2SD2,SAAD.同理SAAB.又ABADA,SA平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF平面SAD.BCAD,BC平面SAD,BC平面SAD.而BCBFB,平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 韩语生字考试题及答案
- 自考民法试题及答案
- 航空人员考试题及答案
- 自考普通逻辑试题及答案
- 自考国际私法试题及答案
- 八下期中测试题及答案
- 团体游戏活动方案
- 海航低压考试题及答案
- 呼市冬季捕鱼活动方案
- 员工草坪派对活动方案
- 北师大版(2024)七年级上册生物期末复习全册考点背诵提纲
- 2025年湖南中考生物试题及答案
- 混凝土站销售管理制度
- 山东省威海市实验中学2025届七下英语期末达标检测试题含答案
- 第七中学高二下学期5月月考语文试题(含答案)
- 2025至2030中国旋转密码挂锁行业发展分析及前景趋势与投资报告
- 苏教版八年级下物理期末考试试题(含三套试卷)
- 2025年河北省中考麒麟卷地理(三)及答案
- 河南天一大联考2025年高二下学期期末学业质量监测英语试题
- GB∕T 40754-2021 商场公共设施服务规范
- 流体力学知识点大全
评论
0/150
提交评论