全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.1.1认识三角形第一课时 教学目的 1.理解三角形、三角形的边、顶点、内角、外角等概念。 2.会将三角形按角分类。 3.理解等腰三角形、等边三角形的概念。 重点、难点 1重点:三角形内角、外角、等腰三角形、等边三角形等概念。 2难点:三角形的外角。 教学过程 一、引入新课 在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题。 本章我们将学习三角形的基本性质。 二、新授 1三角形的概念: (1)什么是三角形呢? 三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。如图:AB、BC、AC是这个三角形的三边,两边的公共点叫三角形的顶点。(如点A)三角形约顶点用大写字母表示,整个三角形表示为ABC。A(顶点)边BC (2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如BAC。 每个三角形有几个内角?三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中ACD是ABC的一个外角,它与内角ACB相邻。A 外角BCD与ABC的内角ACB相邻的外角有几个?它们之间有什么关系?练习:(1)下图中有几个三角形?并把它们表示出来。ADBC(2)指出ADC的三个内角、三条边。 学生回答后教师接着问:ADC能写成D吗?ACD能写成C吗?为什么? (3)有人说CD是ACD和BCD的公共的边,对吗?AD是ACD和ABC的公共边,对吗? (4)BDC是BCD的什么角?是ACD的什么角?BCD是ACD的外角,对吗? (5)请你画出与BCD的内角B相邻的外角。 2三角形按角分类。 让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证。 123第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角。 所有内角都是锐角的三角形叫锐角三角形;有一个内角是直角的三角形叫直角三角形;有一个内角是钝角的三角形叫钝角三角形。三角形按角分类可分为:锐角三角形 (三个内角都是锐角)直角三角形 (有一个内角是直角)钝角三角形 (有一个内角是钝角) 3等腰三角形、等边三角形的概念:让学生观察以下三个三角形,它们的边各有什么特点? A A A B C B C B C 123 经过观察,测量可知:第一个三角形的三边互不相等;第二个三角形有两条边相等(ABAC);第三个三角形的三边都相等。 (1)等腰三角形:两条边相等的三角形叫等腰三角形。 相等的两边叫做等腰三角形的腰,如上图(2)AB、AC是这个等腰三角形的腰。 (2)等边三角形;三条边都相等的三角形叫等边三角形(或正三角形) 问:等边三角形是不是等腰三角形? 等边三角形是特殊的等腰三角形,但等腰三角形不一定都是等边三角形三角形按边来分,可分为:三边都不相等的三角形只有两边相等的三角形等边三角形 三、巩固练习 教科书图916中找出等腰三角形、正三角形、锐角三角边、直角三角形、钝角三角形。 四、小结 l、三角形的概念,一个三角形有三个顶点,三条边,三个内角,六个外角,和三角形一个内角相邻的外角有2个,它们是对顶角,若一个顶点只取一个外角,那么只有3个外角。 2三角形的分类:按角分为三类:锐角三角形,直角三角形,钝角三角形。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 7251.4-2017 低压成套开关设备和控制设备 第 4 部分:对建筑工地用成套设备(ACS)的特殊要求》专题研究报告
- 石英晶体元件装配工岗前岗位考核试卷含答案
- 异壬醇装置操作工岗前工艺优化考核试卷含答案
- 电焊条压涂工持续改进强化考核试卷含答案
- 球团焙烧工风险评估知识考核试卷含答案
- 中药合剂工岗前工作实操考核试卷含答案
- 磨料制造工安全操作考核试卷含答案
- 公司理货员应急处置技术规程
- 石质文物修复师岗位工艺技术规程
- 《GBT 35469-2017 建筑木塑复合材料防霉性能测试方法》专题研究报告
- (2025年新教材)部编人教版二年级上册语文 语文园地六 课件
- 脚手架施工监理细则规范
- 2025贵州水投水务集团安顺关岭有限公司财务资产部招聘1人笔试历年参考题库附带答案详解
- 2024-2025学年广东省深圳市坪山区教科版四年级上册期中考试科学试卷(解析版)
- 2025年四川省考选调公务员录用考试《行测》真题及答案
- 校长在班主任经验交流会上的讲话-:以经验为梯强班建以责任为炬护成长
- 机电设备安装工程物料调度方案
- 2025年产业政策效应下我国新能源汽车产业政策效果评估可行性研究报告
- ISO9001-2026质量管理体系中英文版标准条款全文
- 2025秋统编版(2024)道德与法治三年级上册《10 公共场所的文明素养》教学设计
- 2025年秋季学期国家开放大学《马克思主义基本原理》专题测验1-8答案
评论
0/150
提交评论