连续系统的s域分析_第1页
连续系统的s域分析_第2页
连续系统的s域分析_第3页
连续系统的s域分析_第4页
连续系统的s域分析_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章连续系统的s域分析 频域分析以虚指数信号ej t为基本信号 任意信号可分解为众多不同频率的虚指数分量之和 使响应的求解得到简化 物理意义清楚 但也有不足 1 有些重要信号不存在傅里叶变换 如e2t t 2 对于给定初始状态的系统难于利用频域分析 在这一章将通过把频域中的傅里叶变换推广到复频域来解决这些问题 本章引入复频率s j 以复指数函数est为基本信号 任意信号可分解为不同复频率的复指数分量之和 这里用于系统分析的独立变量是复频率s 故称为s域分析 所采用的数学工具为拉普拉斯变换 5 1拉普拉斯变换 从傅里叶变换到拉普拉斯变换收敛域 单边 拉普拉斯变换常见函数的拉普拉斯变换单边拉氏变换与傅里叶变换的关系 一 从傅里叶变换到拉普拉斯变换 有些函数不满足绝对可积条件 求解傅里叶变换困难 为此 可用一衰减因子e t 为实常数 乘信号f t 适当选取 的值 使乘积信号f t e t当t 时信号幅度趋近于0 从而使f t e t的傅里叶变换存在 相应的傅里叶逆变换为 f t e t Fb j f t e t 令s j d ds j 有 定义 双边拉普拉斯变换对 Fb s 称为f t 的双边拉氏变换 或象函数 f t 称为Fb s 的双边拉氏逆变换 或原函数 二 收敛域 只有选择适当的 值才能使积分收敛 信号f t 的双边拉普拉斯变换存在 使f t 拉氏变换存在 的取值范围称为Fb s 的收敛域 下面举例说明Fb s 收敛域的问题 例1因果信号f1 t e t t 求拉氏变换 解 可见 对于因果信号 仅当Re s 时 其拉氏变换存在 收敛域如图所示 收敛域 收敛边界 例2反因果信号f2 t e t t 求拉氏变换 解 可见 对于反因果信号 仅当Re s 时 其拉氏变换存在 收敛域如图所示 例3双边信号求其拉普拉斯变换 求其拉普拉斯变换 解 其双边拉普拉斯变换Fb s Fb1 s Fb2 s 仅当 时 其收敛域为 Re s 的一个带状区域 如图所示 例4求下列信号的双边拉普拉斯变换 f1 t e 3t t e 2t t f2 t e 3t t e 2t t f3 t e 3t t e 2t t 解 Re s 2 Re s 3 3 2 可见 象函数相同 但收敛域不同 双边拉氏变换必须标出收敛域 通常遇到的信号都有初始时刻 不妨设其初始时刻为坐标原点 这样 t 0时 f t 0 从而拉氏变换式写为 称为单边拉氏变换 简称拉氏变换 其收敛域一定是Re s 可以省略 本课程主要讨论单边拉氏变换 三 单边拉氏变换 简记为F s f t f t 1 F s 或f t F s 四 常见函数的拉普拉斯变换 1 t 1 2 t 或1 1 s 0 3 指数函数e s0t Re s0 cos 0t ej 0t e j 0t 2 sin 0t ej 0t e j 0t 2j 5 2拉普拉斯变换性质 线性性质尺度变换时移特性复频移特性时域微分时域积分 卷积定理s域微分s域积分初值定理终值定理 一 线性性质 若f1 t F1 s Re s 1 f2 t F2 s Re s 2则a1f1 t a2f2 t a1F1 s a2F2 s Re s max 1 2 例1f t t t 1 1 s 0 二 尺度变换 若f t F s Re s 0 且有实数a 0 则f at 证明 三 时移特性 若f t F s Re s 0 且有实常数t0 0 则f t t0 t t0 e st0F s Re s 0 与尺度变换相结合 f at t0 at t0 例1 求如图信号的单边拉氏变换 解 f1 t t t 1 f2 t t 1 t 1 F1 s 例2 已知f1 t F1 s 求f2 t F2 s 解 f2 t f1 0 5t f1 0 5 t 2 f1 0 5t 2F1 2s f1 0 5 t 2 2F1 2s e 2s f2 t 2F1 2s 1 e 2s 四 复频移 s域平移 特性 若f t F s Re s 0 且有复常数sa a j a 则f t esat F s sa Re s 0 a 例1 已知因果信号f t 的象函数F s 求e tf 3t 2 的象函数 解 e tf 3t 2 五 时域的微分特性 微分定理 若f t F s Re s 0 则f t sF s f 0 推广 证明 六 时域积分特性 积分定理 证明 例1 t2 t 七 卷积定理 时域卷积定理若因果函数f1 t F1 s Re s 1 f2 t F2 s Re s 2则f1 t f2 t F1 s F2 s 复频域 s域 卷积定理 八 s域微分和积分 若f t F s Re s 0 则 例1 t2e 2t t e 2t t 1 s 2 t2e 2t t 例2 九 初值定理和终值定理 初值定理和终值定理常用于由F s 直接求f 0 和f 而不必求出原函数f t 初值定理 设函数f t 不含 t 及其各阶导数则 终值定理 若f t 当t 时存在 并且f t F s Re s 0 0 0 则 举例 例1 5 3拉普拉斯逆变换 直接利用定义式求反变换 复变函数积分 比较困难 通常的方法 1 查表 2 利用性质 3 部分分式展开 结合 若象函数F s 是s的有理分式 可写为 若m n 假分式 可用多项式除法将象函数F s 分解为有理多项式P s 与有理真分式之和 由于L 1 1 t L 1 sn n t 故多项式P s 的拉普拉斯逆变换由冲激函数构成 下面主要讨论有理真分式的情形 一 零 极点的概念 若F s 是s的实系数有理真分式 m n 则可写为 分解 零点 极点 二 拉氏逆变换的过程 求F s 的极点 将F s 展开为部分分式 查变换表求出原函数f t 部分分式展开 1 第一种情况 单阶实数极点 单阶实极点举例 1 求极点 2 展为部分分式 3 逆变换 求系数 假分式情况 作长除法 第二种情况 极点为共轭复数 共轭极点出现在 求f t 2 K1 e tcos t t 共轭极点举例 第三种情况 有重根存在 如何求K2 K2的求法 逆变换 一般情况 求K11 方法同第一种情况 求其他系数 要用下式 举例 5 4复频域分析 一 微分方程的变换解 描述n阶系统的微分方程的一般形式为 系统的初始状态为y 0 y 1 0 y n 1 0 思路 用拉普拉斯变换微分特性 若f t 在t 0时接入系统 则f j t sjF s y t yzi t yzs t s域的代数方程 举例 例1描述某LTI系统的微分方程为y t 5y t 6y t 2f t 6f t 已知初始状态y 0 1 y 0 1 激励f t 5cost t 求系统的全响应y t 解 方程取拉氏变换 并整理得 Yzi s Yzs s y t 2e 2t t e 3t t 4e 2t t yzi t yzs t 暂态分量yt t 稳态分量ys t 二 系统函数 系统函数H s 定义为 它只与系统的结构 元件参数有关 而与激励 初始状态无关 yzs t h t f t H s L h t Yzs s L h t F s 例2已知当输入f t e t t 时 某LTI因果系统的零状态响应 yzs t 3e t 4e 2t e 3t t 求该系统的冲激响应和描述该系统的微分方程 解 h t 4e 2t 2e 3t t 微分方程为y t 5y t 6y t 2f t 8f t s2Yzs s 5sYzs s 6Yzs s 2sF s 8F s 取逆变换yzs t 5yzs t 6yzs t 2f t 8f t 三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论