


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浅谈函数的对称性http:/www.DearEDU.com新化二中数学组 陈秋生函数的对称性是函数性质的一条非常重要的性质,对学生的逻辑思维能力和数形结合思想有着较高的要求,也逐渐成了高考和竞赛的热点,笔者在分析2006年高考试题时发现:全国卷(文)第4题,北京卷(文)第2题,天津卷(理)第8题,山东卷(理)第6题,湖南(文)第8题等,都是一些能直接用函数对称性解决的问题。但同时也使很多同学感到困惑,本文就笔者在教学中的一些心得谈几点浅显的看法。一、 函数自身的对称性结论. 若函数 y = f (x)满足f (a +x) = f (bx)那么函数本身的图像关于直线x = 对称,反之亦然。证明 :已知对于任意的都有f(a+) =f(b)= 令a+=, b= 则(,),(,)是函数y=f(x)上的点显然,两点是关于x= 对称的。反之,若已知函数关于直线x = 对称,在函数y = f (x)上任取一点()那么()关于x = 对称点(a+ b,)也在函数上故f()=f(a+ b)f(a+(-a)=f(b-(-a)所以有f (a +x) = f (bx)成立。推论:偶函数(f(x)=f(-x))关于y轴对称。结论.如果函数 y = f (x)满足f (x) + f (ax) = b,那么它的图像关于点A ()对称,反之亦然。证明:设点P(x ,y)是y = f (x)图像上任一点,则点P()关于点A ()的对称点P(a, b)也在y = f (x)图像上,故b = f (a)即 + f (a)=b故f (x) + f (ax) = b反之,设点P()是y = f (x)图像上任一点,则0 = f () f (x) + f (ax) =bf () + f (a) =b,即b = f (a) 。 故点P(a, b)也在y = f (x) 图像上,而点P与点P关于点A ()对称,所以函数图象是关于点成中心对称的。推论:奇函数(f(-x)=-f(x))图象关于原点成中心对称。结论A)若函数y = f (x) 图像同时关于点P (a ,c)和点Q (b ,c)成中心对称 (ab),则y = f (x)是周期函数,且2| ab|是其一个周期。 B)若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (ab),则y = f (x)是周期函数,且2| ab|是其一个周期。C)若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| ab|是其一个周期。证明(略)例如:设函数y=f(x)定义在实数集上,则函数y=f(x2)与函数y=f(2x)的图象关于对称。函数是定义在上的函数且f(x2)f(2x)由f(a-x)=f(x+b)的对称轴是x=0函数图象关于y轴对称!细心的读者会看出,它其实不是同一个函数的对称问题,而是两个函数的对称,所以上述的解法是错误的。二、 不同函数的对称问题结论.若点p(,)关于点(a,b)对称点为q()则2a-,=2b- 若点p(,)关于直线Ax+By+C=0对称点为q()则(证明留给读者)结论. 函数y = f (x)与y = 2bf (2ax)的图像关于点A (a ,b)成中心对称。结论.函数y = f (x)与y = f (2ax)的图像关于直线x = a成轴对称。函数y = f (x)与ax = f (ay)的图像关于直线x +y = a成轴对称。函数y = f (x)与xa = f (y + a)的图像关于直线xy = a成轴对称。 设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线xy = a的轴对称点为P(x1, y1),则x1 = a + y0 , y1 = x0a ,x0 = a + y1 , y0= x1a 代入y0 = f (x0)之中得x1a = f (a + y1) 点P(x1, y1)在函数xa = f (y + a)的图像上。同理可证:函数xa = f (y + a)的图像上任一点关于直线xy = a的轴对称点也在函数y = f (x)的图像上。故定理5中的成立。推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。三、 函数对称性应用举例例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5x) = f (5+x),则f (x)一定是( )(第十二届希望杯高二 第二试题)(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数解:f (10+x)为偶函数,f (10+x) = f (10x).f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。故选(A)例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x1)和g-1(x2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。 (A) 1999; (B)2000; (C)2001; (D)2002。 解:y = f(x1)和y = g-1(x2)函数的图像关于直线y = x对称,y = g-1(x2) 反函数是y = f(x1),而y = g-1(x2)的反函数是:y = 2 + g(x), f(x1) = 2 + g(x), 有f(51) = 2 + g(5)=2001故f(4) = 2001,应选(C)例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1x),当1x0时,f (x) = x,则f (8.6 ) = _ (第八届希望杯高二 第一试题)解:f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴;又f(1+x)= f(1x) x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (0.6 ) = 0.3例4.函数 y = sin (2x + )的图像的一条对称轴的方程是( )(92全国高考理) (A) x = (B) x = (C) x = (D) x =解:函数 y = sin (2x + )的图像的所有对称轴的方程是2x + = k+x = ,显然取k = 1时的对称轴方程是x = 故选(A)例5. 设f(x)是定义在R上的奇函数,且f(x+2)= f(x),当0x1时,f (x) = x,则f (7.5 ) = ( ) (A) 0.5(B)0.5(C) 1.5(D) 1.5解:y = f (x)是定义在R上的奇函数,点(0,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业技能培训学校品牌加盟及师资输出人才培养合作协议
- 心理咨询专业保密协议补充内容
- 家族信托资产非物质文化遗产保护合同
- 供应链商业方法专利合作开发与应用合同
- 智能交通认证补充协议
- 民宿短租平台智能客服系统用户协议
- 药品MAH委托生产生产质量追溯与召回服务协议
- DB42-T 2033.1-2023 景观花海植物种植技术规程 第1部分:百日菊
- 置业顾问季度个人总结模版
- 下关第一中学2025年高三二模冲刺(六)数学试题含解析
- 2023年08月甘肃省农业科学院公开招聘30人笔试历年难易错点考题荟萃附带答案详解
- 应用翻译-华东交通大学中国大学mooc课后章节答案期末考试题库2023年
- JGJ142-2004《地面辐射供暖技术规程》条文说明
- 大学生性健康教育智慧树知到答案章节测试2023年南昌大学
- 2、圆口纲完整版课件
- JB/T 20173-2016辊压干法制粒机
- 外科护理学题库(中专)
- DB2110T 0004-2020 辽阳地区主要树种一元、二元立木材积表
- 建设工程施工项目每日“防高坠三检”检查记录表
- 住建部《建筑业10项新技术(2017版)》解读培训课件
- 基于深度学习的问题链讲座课件(44张PPT)
评论
0/150
提交评论