(江苏专用)2019-2020学年高中数学 课时跟踪检测(十四)两个基本计数原理 苏教版选修2-3_第1页
(江苏专用)2019-2020学年高中数学 课时跟踪检测(十四)两个基本计数原理 苏教版选修2-3_第2页
(江苏专用)2019-2020学年高中数学 课时跟踪检测(十四)两个基本计数原理 苏教版选修2-3_第3页
(江苏专用)2019-2020学年高中数学 课时跟踪检测(十四)两个基本计数原理 苏教版选修2-3_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时跟踪检测(十四)两个基本计数原理课下梯度提能一、基本能力达标1已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()a40b16c13 d10解析:选c分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;第2类,直线b与直线a上5个点可以确定5个不同的平面故可以确定8513个不同的平面2已知x2,3,7,y31,24,4,则(x,y)可表示不同的点的个数是()a1 b3c6 d9解析:选d这件事可分为两步完成:第一步,在集合2,3,7中任取一个值x有3种方法;第二步,在集合31,24,4中任取一个值y有3种方法根据分步乘法计数原理知,有339个不同的点3某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有()a3种 b6种c7种 d9种解析:选c分3类:买1本好书,买2本好书和买3本好书,各类的购买方式依次有3种、3种和1种,故购买方式共有3317(种)4从集合0,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数abi,其中虚数有()a30个 b42个c36个 d35个解析:选c要完成这件事可分两步,第一步确定b(b0)有6种方法,第二步确定a有6种方法,故由分步乘法计数原理知共有6636个虚数5如图,小明从街道的e处出发,先到f处与小红会合,再一起到位于g处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()a24 b18c12 d9解析:选b由题意可知ef有6种走法,fg有3种走法,由分步乘法计数原理知,共6318种走法6已知a2,4,6,8,b3,5,7,9,能组成logab1的对数值有_个解析:分四类,当a2时,b取3,5,7,9四种情况;当a4时,b取5,7,9三种情况;当a6时,b取7,9两种情况;当a8时,b取9一种情况,所以总共有432110种,又log23log49,所以对数值有9个答案:97某运动会上,8名男运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种解析:分两步安排这8名运动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,共有43224种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有54321120种方法所以安排这8人的方式共有241202 880种答案:2 8808圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为_解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n1条,这n1条直径都可以与该点形成直角三角形,即一个点可形成n1个直角三角形,而这样的点有2n个,所以一共可形成2n(n1)个符合条件的直角三角形答案:2n(n1)9从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个10已知a3,4,6,b1,2,7,8,r8,9,则方程(xa)2(yb)2r2可表示多少个不同的圆?解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8,9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有n34224(个)二、综合能力提升1某团支部进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、副书记、组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职方案有()a10种 b11种c12种 d13种解析:选b当丁不入选时,由甲、乙、丙三人任职,甲有两种选择,余下的乙和丙只有一种选择;当丁入选时,有三种结果,丁担任三个人中没有入选的人的职务时,只有一种结果,丁担任入选的两个人的职务时,有两种结果,共有3(21)9种综上可知,共有9211种结果,故选b.2书架上层放有6本不同的数学书,下层放有5本不同的语文书(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法根据分类计数原理,得到不同的取法的种数是6511.答:从书架上任取一本书,有11种不同的取法(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法根据分步计数原理,得到不同的取法的种数是6530.答:从书架上取数学书与语文书各一本,有30种不同的取法3现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法所以共有不同的选法n7891034(种)(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长所以共有不同的选法n789105 040(种)(3)分六类,每类又分两步:从一、二班学生中各选1人,有78种不同的选法;从一、三班学生中各选1人,有79种不同的选法;从一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论