




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第11章多因素实验的方差分析 方法 方差分析 F检验 目的 研究多个 包括两个 处理因素对试验对象的试验指标的作用资料 处理因素分几个水平 非定量 试验指标定量结果 应用 FactorialdesignANOVA 析因设计的方差分析 一 析因设计二 析因设计的方差分析 一 两因素两水平 二 两因素三水平 三 三因素多水平 实例1 甲乙两药治疗高胆固醇血症的疗效 胆固醇降低值mg 问 甲乙两药是否有降低胆固醇的作用 两种药间有无交互作用 完全随机的两因素2 2析因设计 实例2 小鼠种别A 体重B和性别C对皮内移植SRS瘤细胞生长特征影响的结果 肿瘤体积cm3 问 A B C各自的主效应如何 三者间有无交互作用 完全随机的三因素2 2 2析因设计 实例3 研究小鼠在不同注射剂量和不同注射频次下药剂ACTH对尿总酸度的影响 问 A B各自的主效应如何 二者间有无交互作用 随机配伍的两因素3 2析因设计 显著特征每个处理是各因素各水平的一种组合 总处理数为各因素各水平的全面组合数 即各因素各水平数的乘积 如两因素析因设计 设A因素有I个水平 B因素有J个水平 则总处理数G I J 在三个因素的析因设计中 若各因素水平为I J K 则总处理数G I J K 要求各个处理组内的实验单位数相等 便于手工计算 且每组至少有两个实验单位 否则无法分析因素间的交互作用 故总的实验单位数至少为2G 2 实验设计各因素各水平的全面组合设有k个因素 每个因素有L1 L2 Lk个水平 那么共有g L1 L2 Lk个处理组 例如有三个因素 分别是A B C A因素有2水平 B因素有3水平 C因素有2水平 则处理组g 2 3 2 12个确定了处理组数后 将实验对象分配到各组的方法可以采用完全随机设计 随机区组设计或拉丁方设计 析因设计 FactorialDesign 是一种多因素多水平交叉分组进行全面试验的设计方法 它可以研究两个或两个以上因素多个水平的效应 在析因设计中 研究因素的所有可能的水平组合都能被研究到 例如4个因素同时进行实验 每个因素取两个水平 实验的总组合数为24 16 如果水平为3 则有34 81种组合数 即是这81种组合均进行实验 所以析因设计可以分析观测指标与研究因素间的复杂关系 包括各因素间的交互作用 Interaction 3 析因设计的特点2个以上 处理 因素 factor 分类变量 2个以上水平 level 2个以上重复 repeat 每次试验涉及全部因素 即因素同时施加观察指标 观测值 为计量资料 独立 正态 等方差 4 析因设计的有关术语单独效应 simpleeffects 其它因素 factor 的水平 level 固定为某一值时 某一因素的效应 即其他因素的水平固定时 同一因素不同水平间的差别 主效应 maineffects 某因素各单独效应的平均效应 某一因素各水平间的平均差别 交互作用 Interaction 某一因素的各个单独效应随着另一因素变化而变化的情况 如一级交互作用AB 二级交互作用ABC 如果不存在交互效应 则只需考虑各因素的主效应 在方差分析中 如果存在交互效应 解释结果时 要逐一分析各因素的单独效应 找出最优搭配 在两因素析因设计时 只需考虑一阶交互效应 三因素以上时 除一阶交互效应外 还需考虑二阶 三阶等高阶交互效应 解释将更复杂 A B A B AB A B C A B C AB AC BC ABC 5 析因设计的优缺点优点 比单处理因素设计能提供更多的试验信息 可用来分析全部因素主效应 以及因素间各级的交互作用 在医学上可用于筛选最佳治疗方案 药物配方 实验条件等研究 缺点 当因素增加时 实验组数呈几何倍数增加 所需试验的次数很多 不但计算复杂 而且给众多交互作用的解释带来困难 因此 当因素及水平数较多时 一般不采用完全交叉分组的析因设计 而采用正交设计 一 两因素两水平 2 2 完全随机析因设计的方差分析 例11 1 研究不同缝合方法及缝合后时间对家兔轴突通过率 的影响 问 两种缝合方法间有无差别 缝合后时间长短间有无差别 两者间有无交互作用 2因素2水平析因实验示意图 表2因素2水平析因试验的均数差别 A因素 在a1b1 a1b2 a2b1和a2b2的四种处理组合中 每个格子均有5个数据 因此它又是重复数相等的析因设计 由于数据按因素A和因素B两个方向交叉分组 故可用双向方差分析 进一步分析处理的单独效应 simpleeffect 主效应 maineffect 和交互效应 interaction 单独效应 其他因素的水平固定时 同一因素不同水平间的差别 表2 22 2析因设计均数差别分析 析因试验的均数差别 b因素 平均 b2 b1 b1 b2 a1 24 44 34 20 a2 28 52 40 24 平均 26 48 22 a2 a1 4 8 6 a因素 a因素单独效应 比较缝合后两个时间点的轴突通过率a b1固定 a2 a1 28 24 4a b2固定 a2 a1 52 44 8 b因素单独效应 b a1固定 b2 b1 20b a2固定 b2 b1 24 主效应 某一因素各水平间的平均差别 A因素的主效应解释为 束膜缝合与外膜缝合相比 不考虑缝合时间 神经轴突通过率提高了6 40 34 B因素的主效应解释为 缝合后2月与1月相比 不考虑缝合方法 神经轴突通过率提高了22 48 26 交互作用 interaction 当某因素的各个单独效应随另一因素水平的变化而变化 且相互间的差别超出随机波动范围时 则称这两个因素间存在交互作用 若某因素不同水平间的单独效应差因另一因素水平的影响呈较大幅度增加 并且差别有统计学意义 可认为两因素有协同交互作用 若某因素不同水平间的单独效应差因另一因素水平的影响呈较大幅度下降 并且差别有统计学意义 可认为两因素有拮抗交互作用 交互作用统计分析时 若存在交互作用 须逐一分析各因素的单独效应 反之如果不存在交互作用 则两因素的作用相互独立 分析某一因素的作用只需考察该因素的主效应 两因素的交互作用称为一阶交互作用 当因素个数大于2时 可计算二阶交互作用 三阶交互作用 A1 A2 10 30 40 50 B1 B2 B1 B2 两因素无交互作用 反应值 20 A1 A2 10 20 40 50 B1 B2 B2 B1 两因素有交互作用 为拮抗作用 反应值 30 析因试验的均数差别 b因素 平均 b2 b1 b1 b2 a1 24 44 34 20 a2 28 52 40 24 平均 26 48 22 a2 a1 4 8 6 a因素 本例考察的交互作用为不同的缝合方法是否影响两个时间点家兔的轴突通过率 ab交互作用 24 20 4 当某因素的各个单独效应随另一因素水平的变化而变化 且相互间的差别超出随机波动范围时 则称这两个因素间存在交互作用 交互作用 缝合后2月后束膜缝合与外膜缝合神经轴突通过率的差异 仅比缝合后1月提高了2 两条直线相互平行 表示两因素交互作用很小 ANOVA分析的必要性 A因素 缝合方法 的主效应为6 B因素 缝合时间 的主效应为22 AB的交互作用为2 以上都是样本均数的比较结果 要推论总体均数是否有同样的特征 需要对试验结果进行方差分析后下结论 H0 两种缝合方式间轴突通过率相同H1 两种缝合方式间轴突通过率不同H0 不同时间轴突通过率相同H1 不同时间轴突通过率不同H0 缝合方式与时间存在交互作用H1 缝合方式与时间不存在交互作用 0 05 2 2析因设计方差分析时变异分解及计算 变异分解A因素 不同方法 误差 B因素 不同时间 误差 AB因素 AB交互 误差 误差变异 随机因素 未知因素 处理组变异 总变异 SS处理的析因分解 2 处理间离均差平方和 3 A因素离均差平方和 1 总离均差平方和 SS估计量的计算方法 A 4 B因素离均差平方和 5 AB交互作用 6 误差离均差平方和 析因分析结果 两因素方差分析的分析策略小结 1先做两因素方差分析确定是否有交互作用 2如果没有交互作用 看主效应的差别是否有统计学意义 若有统计学意义 考察相应的样本均数 确定哪种情况的均数高 3如果有交互作用 则不能分析主效应 而化为单因素的方差分析 组数为各个因素的水平数之和 作两两比较 4在有交互作用的情况下 通过计算样本均数确认交互作用为协同作用还是拮抗作用 如果有交互作用 则 两个药都用的均数 A药的均数 B药的均数 两个药都未用的均数 则称协同作用 两个药都用的均数 A药的均数 B药的均数 两个药都未用的均数 则称拮抗作用 A B因素 二 两因素多水平完全随机析因设计的方差分析 例11 2观察A B两种镇痛药物联合运用在产妇分娩时的镇痛效果 A药取3个剂量 1 0m 2 5mg 5 0mg B药也取3个剂量 5 g 15 g 30 g 共9个处理组 将27名产妇随机等分为9组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年共享出行平台在提升用户出行体验中的创新服务研究报告
- 父母遗产房子分割协议书
- 管廊钢筋合同分包协议书
- 物流车辆三方转让协议书
- 海洋技术入股协议合同书
- 黄金麻外墙干挂合同范本
- 防水sbs施工合同范本
- 高校就业协议与劳动合同
- 生产线外包协议合同范本
- 苏州市购买二手房协议书
- 网约车考试题库及答案
- 慢阻肺健康宣教
- 湖北省两校2025年物理高一下期末综合测试试题含解析
- 热射病病例查房汇报
- 小学一年级升二年级暑假数学作业-应用题(178题)(附答案)
- 酒店卫生管理自查报告和整改措施
- 养猪学培训课件
- 班主任常规工作培训课件
- 股份代持及员工持股计划协议书范本
- 燃气专项安全评估报告
- 2024过敏性休克抢救指南(2024)课件干货分享
评论
0/150
提交评论