




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲不等式选讲,专题八系列4选讲,栏目索引,高考真题体验,1,2,(1)求M;,解析答案,1,2,解析答案,1,2,所以f(x)2的解集Mx|1x1.,(2)证明:当a,bM时,|ab|1ab|.,1,2,证明由(1)知,当a,bM时,1a1,1b1,从而(ab)2(1ab)2a2b2a2b21(a21)(1b2)0,即(ab)21的解集;,解当a1时,f(x)1化为|x1|2|x1|10.当x1时,不等式化为x40,无解;,当x1时,不等式化为x20,解得1xa(a0)f(x)a或f(x)0)af(x)a;(3)对形如|xa|xb|c,|xa|xb|c的不等式,可利用绝对值不等式的几何意义求解.,例1已知函数f(x)|xa|,其中a1.(1)当a2时,求不等式f(x)4|x4|的解集;,当x2时,由f(x)4|x4|得2x64,解得x1;当2x4时,f(x)4|x4|无解;当x4时,由f(x)4|x4|得2x64,解得x5;所以f(x)4|x4|的解集为x|x1或x5.,解析答案,(2)已知关于x的不等式|f(2xa)2f(x)|2的解集为x|1x2,求a的值.,解记h(x)f(2xa)2f(x),,又已知|h(x)|2的解集为x|1x2,,解析答案,思维升华,思维升华,(1)用零点分段法解绝对值不等式的步骤:求零点;划区间、去绝对值号;分别解去掉绝对值的不等式;取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.,跟踪演练1已知函数f(x)|x2|x5|.(1)证明:3f(x)3;,当2x5时,30,xy0,,解析答案,证明因为3|y|3y|2(xy)(2xy)|2|xy|2xy|,,解析答案,思维升华,思维升华,(1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:作差;分解因式;与0比较;结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.,证明当|ab|0时,不等式显然成立.,解析答案,解析答案,热点三柯西不等式的应用,柯西不等式(1)设a,b,c,d均为实数,则(a2b2)(c2d2)(acbd)2,当且仅当adbc时等号成立.,例3(2015福建)已知a0,b0,c0,函数f(x)|xa|xb|c的最小值为4.(1)求abc的值;,解因为f(x)|xa|xb|c|(xa)(xb)|c|ab|c,当且仅当axb时,等号成立.又a0,b0,所以|ab|ab.所以f(x)的最小值为abc.又已知f(x)的最小值为4,所以abc4.,解析答案,解由(1)知abc4,由柯西不等式得,解析答案,思维升华,思维升华,(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为,在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.,跟踪演练3已知定义在R上的函数f(x)|x1|x2|的最小值为a.(1)求a的值;,解因为|x1|x2|(x1)(x2)|3,当且仅当1x2时,等号成立,所以f(x)的最小值等于3,即a3.,(2)若p,q,r是正实数,且满足pqra,求证:p2q2r23.,证明由(1)知pqr3,又因为p,q,r是正实数,所以(p2q2r2)(121212)(p1q1r1)2(pqr)29,即p2q2r23.,返回,解析答案,1,2,3,高考押题精练,解得x2.,解析答案,1,2,3,解析答案,1,2,3,解因为a,b,c均为正实数,,当且仅当abc时等号成立.,1,2,3,证明假设a、b、c都不大于0,即a0,b0,c0,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 德州十中住宿班考试题及答案
- 天然药物学实操考试题及答案
- 期末数量关系专项测试卷(含答案) 五年级数学上册(人教版)
- 2025年公需科目人工智能与健康考试题(附答案)
- 2025年高校教师岗前培训高等教育心理学知识竞赛考试题库及参考答案
- 2025年高速监测员面试题及答案
- 2025年高级钳工试题题库及答案
- 读章程及运行管理办法
- 计量标签化管理办法
- 苏州青青菜管理办法
- 2025年秋统编版语文二年级上册全册课件(课标版)
- 2025全国农业(水产)行业职业技能大赛(水生物病害防治员)选拔赛试题库(含答案)
- 2025年学校意识形态工作要点
- GB/T 13173-2021表面活性剂洗涤剂试验方法
- FZ/T 73044-2012针织配饰品
- 全套课件:机械基础
- 公安派出所建设标准
- 智慧矿山为未来煤矿发展赋能课件
- 领导科学概论课件
- 煤矿安全规程(防治水)课件
- 污水站沉淀池清淤及清洗工作施工方案
评论
0/150
提交评论