YZY400全液压桩机的纵向行走设计【说明书+CAD】
收藏
资源目录
压缩包内文档预览:
编号:75970497
类型:共享资源
大小:982.58KB
格式:ZIP
上传时间:2020-04-26
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
40
积分
- 关 键 词:
-
说明书+CAD
YZY400
液压
纵向
行走
设计
说明书
CAD
- 资源描述:
-
YZY400全液压桩机的纵向行走设计【说明书+CAD】,说明书+CAD,YZY400,液压,纵向,行走,设计,说明书,CAD
- 内容简介:
-
南京工业大学优秀毕业设计团队YZY400全液压静力压桩机设计总 结 报 告2005.7本届毕业设计课题为基础施工机械:全液压静力压桩机。我和王东方、洪荣晶、方成刚四位不同专长的老师,设定了九个子课题。设计内容分配如下图所示。其中,静压桩机调平系统,用智能化微机控制原理实现调平以及用CAE进行钢结构强度及应力计算二个子课题为创新课题。桩机的其它结构,也是在将社会同类型桩机结构进行了分析,将不合理的结构进行了改进而设计的。.现在的静压桩机基本上都是使用手动调平,费时费力,调平精度不高,我们提出了一种利用PLC可编程控制器实现自动调平的系统,依靠PLC的计算和逻辑判断功能来指挥支腿液压缸的收缩,从而实现自动调平。自动调平系统具有调平时间短,精度高,效率高,抗干扰能力强等优点。将调平系统应用于静压桩机能节省3个劳动力,且能在桩机工作过程中进行调平,有很好的经济意义和社会意义。当前的桩机大身结构均为经验设计,既不知道哪里应力最大,也不清楚这么样的结构刚度是否满足要求,相当盲目。有的生产厂家为了降低成本,顿位很大的桩机用很薄的钢板焊成大身结构,造成280T的桩机,当工作压力为178T时大身严重开裂。为此,我们用CAE进行钢结构强度及应力计算,使我们设计的桩机结构件不但知道哪里应力大,而且知道应力的分布状态,还知道应力的大小。做到科学合理。为了实现上述两创新课题的需要, 其它的子课题也要与之作相应的结构呼应和结构协调,如调平系统需电液联动,那么,电气控制系统必须提供它需要的24v电压及相应的系统要求并设置各种开关,在机体上还必须安排若干个限位开关;液压系统需安装四只TDV 4/3 EH型电液比例液控多路换向阀及相应的系统要求等等非常规设计。为此整个课题组的大协作共协调的局面就自然形成了。根据答辩情况来看, 总体结构布局是合理的;部件之间的衔接是正确的;设计的自动调平、自动行走及自动转弯均可完善的实现。结构件通过CAE计算, 最大应力在支腿与大身联接处, 这个结论与生产实际中老机型的应用损伤情况是吻合的, 可见, CAE计算方法是正确的。通过CAE计算, 最大应力为33Mpa, 远远小于许用应力。太偏安全, 不经济。要作为生产的产品,理应进一步修改没计, 但同学们毕业时间已到, 很愦憾!这次毕业设计是团队毕业设计, 所以小组所有成员之间的沟通和协商就显得非常重要。在此期间各位小组成员充分发挥了互相协商,互相合作的团队精神,在时间比较紧张的形势下,非常成功的完成了毕业设计的任务。每一个人都付出了艰辛的劳动、流下了辛勤的汗水,同学们通过毕业设计都各有各的丰厚收获, 现抄录几段学生的体会: “这不仅仅是我们四年所学知识的体现,而且,我们在做毕业设计的过程中还学到了工作时的做事方法;很多做人的道理,懂得了无论是以后工作还是做人都要认真负责、踏踏实实、一步一个脚印,毕业设计带给我们的不仅是成功的喜悦,还有和团队一起工作的方法与团队协作的精神; “从毕业设计中,我学到了宝贵的知识,这些知识值得我用一生来珍惜。”1. 静压桩机的概况1.1 静压桩机的总体介绍 YZY400型静压桩机的构造:它由支腿平台结构、行走机构、压桩架、配重、起重机、操作室等部分组成。1.1.1 长船行走机构 为长船行走机构,它内船体,行走台车与顶升液压缸等组成。液压缸活塞杆球头与船体相联接。缸体通过销铰与行走台车相联,行走台车与底盘支腿上的顶升液压缸铰接。工作时,顶升液压缸顶升使长船落地,短船离地,接着长船液压缸伸缩推动行走台车,使桩机沿着长船轨道前后移动。顶升液压缸回程使长船离地,短船落地。短船液压缸动作时,长船船体悬挂在桩机上移动,重复上述动作,桩机即可纵向行走。1.1.2 支腿平台结构 该部分内底盘、支腿、顶升液压缸和配重梁组成。底盘的作用是支承导向压桩架、夹持机构、液压系统装置和起重机,底盘里面安装了液压油箱和操作室,组成了压桩机的液压电控系统。配重梁上安置了配重块,支腿由球铰装配在底盘上。支腿前部安装的顶升液压缸与长船行走机构铰接。球铰的球头与短船行走及回转机构相联。整个桩机通过平台结构连成一体,直接承受压桩时的反力。底盘上的支腿在拖运时可以并拢在乎台边,工作时打开并通过连杆与平台形成稳定的支撑结构。1.1.3 夹持机构与导向压桩架该部分由夹持器横梁、夹持液压缸、导向压桩架和压桩液压缸组成。夹持液压缸装在夹持横粱里面,压桩液压缸与导向压桩架相联。压桩时先将桩吊入夹持器横梁内,夹持液压缸通过夹板将桩夹紧。然后压桩液压缸作伸缩运动,使夹持机构在导向架内上下运动,将桩压人土中。压桩液压缸行程满后松开夹持液压缸,返回后继续上述程序。1.1.4 短船行走机构与回转机构 它由船体、行走梁、回转梁、挂轮机构、行走轮、横船液压缸、回转轴和滑块组成。回转梁两端与底盘结构铰接,中间由回转轴与行走梁相联。行走梁上装有行走轮,正好落在船体的轨道上,用焊接在船体上的挂轮机构1挂在行走梁上,使整个船体组成体。液压缸的一端与船体铰接另一端与行走梁铰接。工作时,顶升液压缸动作,使长船落地,短船离地然后短船液压缸工作使船体沿行走梁前后移动。顶升液压缸回程,长船离地,短船落 地,短船液压缸伸缩使桩机通过回转梁与行走梁推动行走轮在船体的轨道上左右移动。上述动作反复交替进行,实现桩机的横向行走。桩机的回转动作是:长船接触地面,短船离地、两个短船液压缸各伸长1/2行程,然后短船接触地面,长船离地,此时让两个短船液压缸一个伸出个收缩,于是桩机通过回转轴使回转梁上的滑块在行走梁上作回转滑动。油缸行程走满,桩机可转动15度左右,随后顶升液压缸让长船落地,短船离地,两个短船液压缸又恢复到1/2行程处,并将行走梁恢复到回转梁平行位置。重复上述动作,可使整机回转到任意角度。1.2静压桩机的优点:1.2.1 在施工时无噪音。适合对噪音有限制的市区作业,尤其是在城市居民区、学校教育区、医院疗养区、重要机关附近施工。1.2.2 施工时无振动。压桩所引起的桩周围土体隆起和水平挤动,比打入桩要小,适用于危房、精密仪器房及江河岸边、地下管道较多的地区施工。1.2.3 静压桩的施工应力比打入桩小,可节约钢材和水泥,降低成本。并可适当提高砼身承载力。1.2.4 压桩力及桩段入土动态能自动记录和显示,桩的承载力比较有保证,对压桩力可以控制,确保工程质量。1.2.5 施工速度快、工效高、工期短。单机每台班可完成1215根桩的施工,送桩入土深度较深且送桩后桩身质量较可靠。桩的长度不受施工机械的限制。1.2.6 适宜于较软土层,尤其是持力层起伏变化大的土层施工。也适宜于覆土层不厚的岩溶地区。这些地区用钻孔桩很难钻进,用冲击桩易卡锤,用打入桩易打碎,只有静力压桩是慢慢地压入并能显示压入阻力,收到了较好的技术经济效果。1.2.7 由于压桩机的工作高度不高,重心底,所以机器的施工操作和保养较为方便,并可避免高空作业中有不安全的因素。桩机作业人员少,劳动强度低,施工文明。整机拆、运、装十分方便。2 . 桩机的调平系统调平的方案,大致可以分为两类:1.基于单片机的自动调平系统。2.基于PLC的自动调平系统。本文主要是考虑到抗干扰和设计的简便,决定采用PLC作为调平系统的计算机。使用PLC,接线方便,易于编程,抗干扰性强。而使用单片机,连线比较复杂,编程较PLC比较繁琐,系统地抗干扰能力较弱。随着计算机技术的飞速发展,会有越来越先进的调平技术和调平原理出现。我们提出了一种利用PLC实现自动调平的系统,依靠PLC的计算和逻辑判断功能来指挥支腿液压缸的收缩,利用TDV 4/3 EH型电液比例液控多路换向阀,实现电液转换;利用倾角传感器传遽机身的水平状态从而实现自动调平。自动调平系统具有调平时间短,精度高,效率高,抗干扰能力强等优点。将调平系统应用于静压桩机具有很好的经济意义和社会意义。 2.1系统参数(1) 系统工作电压:830VDC(2) 液压系统最大流量:100L/min,工作压力:25Mpa. (3) 调平倾斜度范围: 3(4) 双轴传感器调平精度 :0.5 (5) 调平系统支腿安全压力:1525Mpa. (6) 系统适用温度范围:-2050 2.2 静压桩机自动调平系统设计2.2.1 多油缸同步控制系统设计由于静压桩机在工作和行走过程中要保持平台的水平,而平台的升降是由油缸驱动执行的,所以要保证平台的水平就需要驱动平台的多个油缸实现同步控制。多油缸同步控制系统由同步检测子系统、同步控制子系统和电液实现子系统三大子系统组成,确定油缸同步控制方式的步骤如下:根据同步缸数量、行程和同步要求确定同步子系统检测方式(接触式或非接触式)、检测方法(绝对或相对检测法)、检测量(位移量或速度量等)和检测结构(传感器的布置和选择等);由检测系统确定同步控制子系统中的控制方式(单片机控制,控制或工控机控制等)和控制基准量(检测量的最大值,平均值等);由同步要求确定电液实现子系统的方式选择(主动补偿式,进油调控式等);最后确定同步控制子系统的控制策略的选择(模糊控制,控制,模糊-等)。根据液压系统的设计结果可知,本系统选用了四缸同步系统,其同步系统示意图如下图所示。四缸同步系统研究的现状如下:四缸同步系统示意图(1) 采用相对检测法,选定检测基准油缸(下称基准缸),测量出其他三个缸的相对位移误差值。(2) 利用光栅传感器作为检测元件,光栅定尺在基准缸的结构布置较为复杂。(3) 采用的电液实现系统只能对相对位移滞后的缸进行补偿,不具普遍性。(4) 控制策略单一,不具备比较性。基于上述情况,本系统的控制方案初步选定如下:选择四缸中的某一缸作为基准缸,采用倾角传感器测量平台的倾斜程度;将此倾角偏差值送入PLC系统的模拟量输入模块,通过PLC的CPU进行运算得出油缸的同步误差大小;PLC系统根据油缸的同步误差大小调用内部的PID控制子系统实现控制信号调节;调制后的控制信号由PLC模拟量输出模块送到伺服放大板上进行功率放大,最后驱动电液实现子系统,使四缸保持同步。根据上述选定方案可知,本油缸同步系统需要倾角传感器、电液比例液控多路换向阀、PLC等元器件,下面简要介绍这些元器件的选型。2.2.2 油缸同步跟踪系统的建模系统的控制策略已经在上一章进行了介绍,简要的说,就是选取四缸中的某一缸为基准缸,其它三只缸跟踪基准缸随动。下图表示了某缸跟踪基准缸随动示意图,假设左边为基准缸,当右边缸与左边缸不同步时,倾角传感器产生电信号经过变送器送如PLC的A/D处理模块,PLC的CPU对倾角误差进行线性化处理、PID调节后送入PLC的D/A处理模块,D/A调理后的信号经过伺服放大板驱动电液比例阀的阀芯运动,从而调节油缸运动速度的快慢,保持两个油缸的同步。下面给出两缸同步跟踪的数学模型: 某缸跟踪基准缸随动示意图电液比例阀的线圈回路传递函数为电液比例阀的传递函数执行元件(油缸)的传递函数没有弹性负载的四通阀控制油缸简化传递函数为:若忽略信号变送器、A/D模块及D/A模块等环节的时间常数,可得系统的传递函数框图为 同步跟踪系统的传递函数框图为了使整个跟随系统能获得较好的动、静态性能(如良好的阶跃响应特性,斜坡响应特性),系统采用工程调节中广为使用的PID调节器。2.2.3 PID控制原理在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近60年的历史了,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要和可靠的技术工具。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它设计技术难以使用,系统的控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象或不能通过有效的测量手段来获得系统的参数的时候,便最适合用PID控制技术。 比例积分微分控制包含比例、积分、微分三部2.2.4 系统硬件设计2.2.4.1 根据调平原理分析控制要求 (1).传感器的布置,见下列图,用三个传感器将四个支腿连接在一起, 腿1通过pid程序和腿2始终保持水平和同时动作, 腿3通过pid程序和腿2始终保持水平和同时动作, 4腿通过pid程序和腿3始终保持水平和同时动作, (2).按下自动开关,系统进行自动调平,并在工作的时候始终保持机体水平,监视整个机体的情况,发生倾斜即进入调平程序。 (3).若四个调平支腿中任何一个支腿碰到下限位开关,自动调平系统停止,整个机体上升,四个换向阀全开,5s后停止上升。进入自动调平程序。 (4).四个调平支腿中任何一个支腿碰到上限位开关,自动调平程序停止,整个机体下降,四个换向阀全开,5s后停止下降。进入自动调平程序 (5).按下停止按钮,自动调平程序和手动程序全部停止,换向阀中位。液压回路锁定。 (6).自动调评程序执行过程中,手动调平按钮失效。手动调平程序执行过程中,自动调平按钮失效。 (7).整个机体水平,绿灯亮,机体倾斜,红灯亮 (8).调平误差0.5度以内。 (9).三相电动机的控制,按下电动机启动按钮,继电器1,2吸合,延时8s,继电器2断开,延时2秒,继电器3吸合。按下电动机停止按钮,继电器1,2,3全部断开。(10).按下撤收按钮,四个换向阀全开,当四个支腿碰到各自的下限位开关停止。2.2.4.2 根据控制要求确定用户所需要的输入/输出设备,确定PLC的I/O点数输入设备:1.腿1下限位开关2.腿1上限位开关3.腿2下限位开关4.腿2上限位开关5.腿3下限位开关6.腿3上限位开关7.腿4下限位开关8.腿4上限位开关9.手动控制按钮-腿1伸10.手动控制按钮-腿1缩11.手动控制按钮-腿2伸12.手动控制按钮-腿2缩13.手动控制按钮-腿3伸14.手动控制按钮-腿3缩15.手动控制按钮-腿4伸16.手动控制按钮-腿4缩17.自动控制按钮18.手动控制按钮19.油泵1输入20.油泵2输入21.传感器1输入22.传感器2输入23.传感器3输入输出设备:1.红灯2.绿灯3.油泵1控制(3点)4.油泵2控制(3点)5.伺服阀1左继电器7.伺服阀1右继电器8.伺服阀2左继电器9.伺服阀2右继电器10.伺服阀3左继电器11.伺服阀3右继电器12.伺服阀4左继电器13.伺服阀4右继电器通过以上的统计,该系统总共有23个输入,16个输出。2.2.4.3 选择PLC 该系统总共有数字量输入20点,模拟量输入3点,数字量输出8点,模拟量输入8点CPU选择:选择西门子S7-200 CPU224,详细资料请参阅说明书。扩展模块:数字量扩展数字量输入输出模块EM223(1)EM 223 24V DC 16 输入/16 输出和 EM223 24V DC 16 输入/16 继电器输出 2.2.4.4 分配i/o点,设计I/O连接图 输入腿1下限位开关腿1上限位开关腿2下限位开关腿2上限位开关腿3下限位开关腿3上限位开关腿4下限位开关腿4上限位开关手动控制按钮-腿1伸手动控制按钮-腿1缩手动控制按钮-腿2伸手动控制按钮-腿2缩手动控制按钮-腿3伸手动控制按钮-腿3缩手动控制按钮-腿4伸手动控制按钮-腿4缩I0.1I0.2I0.3I0.4I0.5I0.6I0.7I1.0I1.1I1.2I1.3I1.4I1.5I2.0I2.1I2.2自动控制按钮手动控制按钮油泵1输入油泵2输入传感器1输入传感器2输入传感器3输入I2.3I2.4I2.5I2.6AIW0AIW2AIW4 输出:红灯绿灯油泵1控制油泵1控制油泵1控制油泵2控制油泵2控制油泵2控制伺服阀1左继电器伺服阀1右继电器伺服阀2左继电器伺服阀2右继电器伺服阀3左继电器伺服阀3右继电器伺服阀4左继电器伺服阀4右继电器Q0.0Q0.1Q0.2Q0.3Q0.4Q0.5Q0.6Q0.7AQW0AQW2AQW4AQW6AQW8AQW10AQW12AQW142.2.5 系统软件设计2.2.5.1 根据控制要求编写设计流程见图纸2.2.5.2 根据设计流程编写程序:见附录 3.电器控制系统设计 液压静压桩机采用了液压系统作为动力来进行压桩工作,因此电控系统的主要任务是对液压及其控制系统进行控制。电控系统设计又可分为强电部和弱电两个部分:强电部分主要控制液压站的主电机运转;弱电部分由可编程控制器PLC进行控制,控制内容包括主电机运转指令的给出,调平系统的运行控制等。根据液压系统的设计计算可知,系统的供油回路由两个泵组成,其驱动电机的功率分别为75KW(泵1)、220KW(泵2)。一般地,压桩机工作环境可以提供三相380V电源,所以液压系统的电机采用三相380V普通交流异步电机。三相笼式电机直接起动的控制线路简单,维修工作量小,但在起动时的电流约为额定电流的47倍。对于本系统采用的两台大容量电机,如果采用直接起动会引起电网电压降低,电机转矩减小,甚至起动困难,而且还影响同一供电网中的其它设备,因此采用降压起动,以保证起动时供电母线上的电压降不超过额定电压的10%15%。工程实际中常用的降压起动方法通常有星三角降压起动、定子串电阻降压起动和自耦变压器降压起动等。由于4KW以上的三相笼式异步电动机定子绕组在正常工作时都接成三角形,因此可以采用星三角降压起动。考虑到星形直接起动的电流仍然很大,在星形起动过程中进一步采用自耦变压器进行降压起动。起动时,电源电压加在自耦变压器的一次绕组上,电动机的定子绕组与自耦变压器的二次绕组相连,当电动机的转速接近额定值时,将自耦变压器切除,电动机直接与电源相连,在正常的三角形方式下运行。在电机星三角起动过程中需要进行延时切断,传统电路一般采用时间继电器进行控制,而本系统的弱电控制系统采用了可编程控制器,因此可以直接利用PLC的软件延时继电器来进行控制,从而省去了传统的控制元件,节省了安装空间,也提高了控制的可靠性。另一方面,在星三角转换起动中,为了防止交流接触器同时通电的意外情况发生,系统不仅在PLC中采用了星三角转换互锁,而且在硬件上(交流接触器的辅助触头)也采用了互锁控制,以保证电器系统工作的可靠性。系统的控制电路采用西门子PLC(S7200),控制信号电压为24V,因此系统中增加一个开关电源,以满足各数字量I/O、模拟量I/O以及伺服放大板的需要。根据上述设计方案可绘制出系统的控制原理图。见毕业设计图纸。3.大身结构的CAE分析3.1大身结构的有限元模型 有限元分析(FEA)是利用数学近似的方法对真实物理现象(几何及载荷工况)进行模拟的一种分析方法,也是目前求解工程问题中最为流行的数值计算方法。其基本思想是将一个连续的求解域离散化,即通过网格划分将求解域分割成彼此用节点互相联系的有限个单元,在单元体内假设近似解的模式,用有限个节点上的未知参量表征单元的特性,将各个单元的关系通过适当方法,建立组成包含节点未知参数的方程组,求解方程组,得出各节点的未知参数,利用插值函数求出近似解,是对真实情况的一种数值近似。本课题应用大型有限元分析软件ANSYS对大身结构进行分析,分析步骤为 如图1所示。图1 ANSYS计算分析过程流程图3.2 三维实体建模与有限元分析模型 有限元分析的最终目的是要还原一个实际工程系统的数学行为特征,因此有限元分析的第一步就是必须针对一个物理原型建立准确的数学模型。有限元模型的来源主要有下面四种方法:在有限元软件的前处理器中进行几何建模,再划分网格得到;从实体建模软件中引入几何模型,经修改模型和划分网格而得到;直接创建节点与网格;引入有限元模型。其中、种方法一般只适合于小型结构分析,然而,现今几乎绝大部分的有限元分析模型都用实体模型建模,对于大型复杂结构、种方法建模比较困难,目前较为流行的方法是,大型结构的有限元模型一般先通过实体建模软件建立,经适当的格式转换成为有限元分析模型。即用数学的方式表达结构的几何形状,在几何模型里面填充节点和单元,还可以在几何模型上方便地施加载荷和约束。但是几何实体模型并不参与有限元分析,所有施加在几何实体边界上的载荷或约束必须最终传递到有限元模型的节点或单元上进行求解。三维实体建模与有限元分析的关系如图2所示。图2 三维实体建模与有限元分析的关系YZY400型静压桩机大身结构全部由钢板焊接而成,是复杂的空间箱型体系。根据有限元分析的特点,在建模时进行一些必要的模型简化,即略去一些功能件和非承载件,对于结构上的孔、台阶等尽量简化,对截面特性影响不大的特征予以忽略。图3 YZY400型静压桩机大身结构有限元分析模型根据大身结构的特点,在进入ANSYS软件进行分析之前,首先通过Pro/E实体建模软件构件大身结构的三维实体模型,并将几何模型导入ANSYS软件, 利用ANSYS软件自动网格划分功能,定义单元类型为四面体实体单元(Solid93),划分网格,在支腿支处施加边界约束,在立柱联接板处施加压桩载荷,建立YZY400型静压桩机大身结构有限元分析模型如图3所示。网格划分后生成单元总数为283,271,节点总数为337,125个。3.3大身结构强度分析3.3.1 材料参数参数名数值单位杨氏模量1.96e8千帕密度7.9e-6千克/立方毫米泊松比0.33.3.2 载荷分析在建立正确的车身骨架有限元分析模型的基础上,加载边界条件,并根据实际载荷配置情况,对大身结构进行静强度计算分析。大身结构所受载荷包括自重载荷和压桩时的工作载荷,根据静压桩机的工作特点,并考虑到动载荷的影响,取计算载荷为480000kN。图4 加载后的有限元分析模型由于有限元法中内力或外力均由节点传递,在整体刚度矩阵中的载荷项均为节点载荷。因此,将上述载荷作为集中或均布载荷施加于模型中相应节点上,形成节点载荷,在大身四个支腿处施加约束并求解,进行静态分析。加载后的有限元分析模型如图4所示。3.3.3 计算结果建立有限元分析模型后,进入ANSYS求解器进行静态分析求解。计算结果如图5图8所示。图5 大身结构总体变形云图图5所示为大身结构总体变形云图,由图中可以看出,结构最大变形发生在联接立柱处,变形量约为0.81mm,说明结构刚度条件满足要求。图6所示为大身结构合成应力云图。图7为大身结构底面合成应力云图。图8为大身结构支腿处应力云图。由图8显示出,大身结构最大应力部位在支腿与大身的联接处,这与实际相符(曾有该种类型某型号静压桩机在该处发生断裂)。图6 大身结构合成应力云图最大应力部位最大应力值约为34MPa,说明结构设计偏保守,应进一步改进结构,对结构进行优化,使大身结构受力更加合理。图7 大身结构底面应力云图图8 大身结构支腿处应力云图南京工业大学毕业设计论文 毕 业 设 计 论 文课题名称: YZY40全液压桩机的纵向行走设计 学生姓名: 谯 怡 岑 学 号: 410102-04 所在学院: 机械与动力工程学院 专 业: 机械工程及自动化 指导教师: 郑 凤 琴 2005年5月1日前言 怀者接受挑战的心理;带着探求知识的渴望以及满腔热情,终于迎来了我们的毕业设计。早就从上几届师兄师姐和老师们口中得知,毕业设计对我们本科生来说非常重要,这是四年本科中我们的最后一件与学习有关的事情;这是把以前的理论知识加以融会贯通并综合运用的有效方式;这是能让我们学到很多有用的专业知识的课程;这是体现一个人的工作能力的特殊途径;这是一个从学校踏入社会的过渡桥梁;这是一个体现智慧与团队合作的Way很高兴能和这些优秀的同学成为组员,更为能有像郑老师这样出色的教授指导而感到荣幸,于是,我在心底下定决心:一定要好好完成这次毕业设计,给自己四年的大学生活画上一个圆满的句号,为自己以后走上工作岗位打下良好的基础。我们这次的毕业设计课题是YZY400全液压静力压桩机的设计,这是一个非常有挑战性的课题,尤其是对我们这些只学了有限的理论知识的“本科生”们,因为这个课题涉及到很广的知识面,几乎包括了我们大学四年学的所有课程,特别是我们的专业课如:互换性与公差技术、机械设计、机械原理、液压与气压传动等知识内容,还有不太熟悉的电气自动化及其控制方面的内容,也正是因为有这些困难,它才激起了我们要克服它、战胜它的欲望,给了我们学习新知识的动力与源泉。虽然曾经有过金工实习、有过绿洲机械厂、南京汽车集团有限公司等的现场参观实习,但是对桩工机械的陌生还是让我们感到了面临的困难重重。于是,我们每天奔波于网吧与图书馆之间,查找网上有关桩工机械的最新信息,翻阅图书馆的相关资料,当一周下来,终于对桩工机械有了一定的感性认识之后,郑老师趁热打铁,又把我们带领到河西的奥体中心施工现场,给我们讲解静压桩工机械的机构与工作原理,终于让我们对桩工机械从感性上升到理性,对其有了全新、全面的认识,这对我们的毕业设计有很大的帮助。每一个人都付出了艰辛的劳动、流下了辛勤的汗水,看着自己设计出来的作品,大家的脸上都挂着笑容,这不仅仅是我们四年所学知识的体现,而且,我们在做毕业设计的过程中还学到了很多做人的道理,懂得了无论是工作还是做人都要认真负责、踏踏实实、一步一个脚印,只有这样才能走的更好、更远。我也知道,这是我们的“处女作”,由于知识有限、经验不足,所以毕业设计中会出现一些错误与不足,希望各位指导老师能够谅解,并予以帮助,提出您们的宝贵意见,以助我更好地完善我的毕业设计,在此谢谢各位老师。毕业设计教给我们的不仅是专业知识,还有以后工作时的做事方法;毕业设计带给我们的不仅是成功的喜悦,还有和团队一起工作的欢笑与好心情;毕业设计赐予我们的不仅仅是一些工作伙伴,更是好的朋友;毕业设计赋予我们的不仅是一位老师,更是一生难求的益友。从毕业设计中,我学到了宝贵的知识,这些知识值得我用一生来回味,一生来珍惜。 谯怡岑 2005-5-22 目录摘 要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 行走机构的零件设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.1 长船的尺寸设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 液压缸的设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1 长船行走时液压缸的载荷计算 . . . . . . . . . . . . . . . . . . . . . . . . . 82.2 长船液压缸主要结构尺寸的设计计算 . . . . . . . . . . . . . . . . . . 122.2.1 确定纵移液压缸的活塞及活塞杆直径 . . . . . . . . . . . . . . 122.2.2 长船液压缸的流量计算:. . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 长船液压缸的力的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.4 长船液压缸的安装联结尺寸 . . . . . . . . . . . . . . . . . . . . . . . . 152.3 顶升液压缸的机构设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 顶升液压缸的载荷计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 顶升液压缸的活塞直径计算 . . . . . . . . . . . . . . . . . . . . . . . 172.3.3 顶升液压缸的流量计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3.4 顶升液压缸的力的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 液压缸技术规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.5 液压缸的校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.5.1 长船液压缸活塞杆稳定性校核 . . . . . . . . . . . . . . . . . . . . 192.5.2 顶升液压缸活塞杆稳定性校核 . . . . . . . . . . . . . . . . . . . . . 223 行走机构的零件设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.1 小车组件的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2 小车车轮的计算与校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.1 小车车轮的载荷计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.2 车轮接触强度校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3 小车轴的设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.4 小车联结轴的校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.5 选定轴承并加以校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.5.1 基本额定动载荷的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . 293.5.2 基本额定静载荷的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . 303.5.3 初选轴承型号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.5.4 轴承寿命校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 轨道的设计计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.1 钢轨的计算设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.2 铁路钢轨的参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 球头螺栓强度校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 螺栓螺纹部分的强度校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7 液压缸耳套的连接部分设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 小车构架的焊接校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37YZY400全液压静力压桩机的设计 摘 要我国桩工机械起步于较晚,由于历史原因,发展一直较为缓慢、落后的桩工机械和桩基础施工技术已不能适应目前快速发展的大型基础设计建设需要。国内桩工机械行业正面临整体实力不高和国外进口产品冲击的双重压力。桩工机械主要用于各种桩基础、地基改良加固、地下连续墙及其他特殊地基基础等工程的施工。随着城市的发展,对噪声及泥浆污染进行越来越严格的限制,静压桩机必将越来越受到市场的重视因此,我们设计了一种YZY400全液压静力压桩机。为了保证在施工过程中桩机能灵活移动和避免沉陷,一般工程机械的履带行走机构不能满足要求,综合履带行走和预铺轨道的工作原理,我们设计出了一种新型步履行走机构,这种机构操作方便灵活,能很好地适应城市中复杂地地基情况下的压桩基础施工。本实用新型的目的是提供一种能满足大吨位液压静力压桩机要求的步履式行走机构。纵移行走机构包括两个纵移液压缸、四个行走轮架,长船和浮动液压缸。希望此设计能够合理、方便地通过纵向移动机构和横向移动回转机构来实现这些运动;并能安全快速地转移场地与拆装,由于静压桩机自重很大,无法整体搬运,只能拆散后运往新工地再进行拼装。拆装运输应尽量简便合理,使拼装工作量减到最低限度。同时,在设计时要注意横向行走、纵向行走的短船长船以及大身之间的配合。关键词: 桩工机械、全液压静力压桩机、液压缸Abstractin our nation, the development of pile labor machinery is very late. by the reason of historical, The development continuously slower, the backward pile labor machinery and the pile foundation construction technology has not been able to meet the present fast development large-scale foundation design construction need. The domestic pile labor mechanical profession is facing the overall strength not to be high and the over seas import product impact dual pressure. The pile labor machinery mainly uses in each kind of project the and so on pile foundation, ground improve cement enforcement, underground continual wall and other special ground foundation construction. Along with city development, Carries on the more and more strict limit to the noise and the mud pollution, The static pressure pile machine will certainly more and more to receive the market the value. Therefore, we have designed one kind of YZY400 entire hydraulic pressure static forcing pile machine.In order to guarantee the pile function nimbly moves in the construction process and avoids caving in, The general engineering machinery caterpillar band walks the organization not to be able to answer the purpose, The comprehensive caterpillar band walks with the pre- shop track principle of work, We designed one kind of new step to walk the organization, This kind of organization ease of operation is flexible, Can adapt in well the city complex in the ground situation pressure pile foundation construction. This practical new goal is provides one kind to be able to satisfy the great tonnage hydraulic pressure static forcing pile machine request the step type to walk the organization. Vertical divides and hyphenates a word at the end of a line the organization to move the hydraulic cylinder including two, four walks a turn of frame, Long ship and fluctuation hydraulic cylinder. Hoped this design can be reasonable, conveniently realizes these movements through the longitudinal shift organization and the derailing rotation organization; And can safely fast shift the location with to disassemble and assemble, Because the static pressure pile machine is self-possessed very in a big way, Is unable the whole transporting, After only can break up transports to the new work site to carry on assembling again. Disassembles and assembles on assembling again. Disassembles and assembles the transportation to be supposed as far as possible simple to be reasonable, Causes the assembling work load to reduce to the threshold. At the same time, When design must pay attention to short captain which crosswise walks, longitudinally walks between the ship as well as the big body coordination. Keyword: Pile labor machinery, entire hydraulic pressure static forcing pile machine, hydraulic cylinder设计参数每次纵向行走最大行程2每次前进速度 1.41.5每次后退速度 2.62.8每次左移速度 1.4每次右移速度 2.8接地比压 0.13设计计算1 行走机构的零件设计计算1.1 长船的尺寸设计计算 静压桩机的机身总重量: (吨)为了考虑压桩机额定压桩吨位的要求,该压桩机应设计成吨位为: (吨) 长船着地时的工作比压: 长船的总工作面积: 把、代入上式得: 平均到每个长船上的工作面积是: 取长船的长 ,宽2 液压缸的设计计算2.1 长船行走时液压缸的载荷计算 在露天条件下工作的打桩机,当沿着有一定坡度的轨道行走时,存在以 下阻力:摩擦阻力:; 坡度阻力:; 风阻力:; 惯性阻力:;(1) 摩擦阻力摩擦阻力包括车轮的滚动摩擦阻力、车轮轴承中的摩擦阻力、以及车轮轮缘与轨道之间的滑动摩擦阻力。为了简化设计,假定静压打桩机的全部载荷都作用于同一个车轮上,当车沿着轨道滚动时,其受力情况如下图所示,沿铅垂方向有载荷重力以及支反力,当车轮在驱动力矩的作用下开始转动,由于车轮轨道的微小变形,支反力将偏离载荷的作用线一个距离。 图 1 :摩擦阻力计算图 对车轮由平衡条件有: = = = T = + = + = = 车轮轮缘与轨道侧面的摩擦引起的附加摩擦阻力,一般用增加附加阻力摩擦系数 来考虑,得: = 式中 驱动力矩 轴径摩擦阻力矩 变形引起的滚动阻力矩 附加阻力系数 静压桩机自重 轴承摩擦系数,查机械设计手册 车轮滚动阻力系数,查机械设计手册 小车车轮的直径 小车轴径由设计数据,确定各个系数值: = 480 1000 9.8 = 4704000()= 4.7410() = 0.02,车轮轴为滚子轴承 = 0.003,轨道为钢轨,平头,车轮为钢材料 = 0.3 = 0.15 = 1.3,有车辕的柱面车轮,圆锥滚子轴承将以上数据带入式中计算: = = 4.7410(0.020.15/0.3 + 20.003/0.3)1.3 = 183()(2) 行走风阻力 行走风阻力主要指风作用在静压打桩机上引起的阻力,按下式计算: = 式中 C 风力系数,查手册,取 C = 1.2 风压高度变化系数,查手册,取 = 1.0 q 计算风压( ),查手册,取 q = 150 A 静压打桩机的迎风面积,(),取 A = 3.394.43 = 45 = = 1.21.015045 = 8.1 ()(3) 轨道坡度阻力 当静压打桩机沿着具有一定坡度的轨道行驶时,由于静压打桩机自重 沿轨道坡度的分力引起的运动阻力由下式确定: = 式中 轨道倾斜角 () = = = 410 () 图 2 : 坡度阻力计算图(4) 惯性阻力 惯性阻力主要指小车运动时起动惯性阻力,按下式计算: = 式中 小车运行速度 V = 2.8 = 0.047 小车起动时间 t。= ; 取 t。= 0.094 = = (48010009.8)9.80.0470.094 = 240()(5) 载荷力的确定 静压打桩机行走时,由于四个油缸提供动力,考虑到四支液压缸提供 的动力不一定和理论设计时认为的是一组平行力,且大小相等,故单个油 缸取2/3大小的阻力。 = 183 + 8.1 + 410 + 240 = 841() 单个油缸受力: 式中: 单支油缸工作时的作用力 四支油缸同时工作的作用力 由设计数据确定、的值: = = 841() = 将、的值代入式中得: 2.2 长船液压缸主要结构尺寸的设计计算2.2.1 确定纵移液压缸的活塞及活塞杆直径 YZY400型 静压打桩机属于大型的工程机械,根据机械设计手册,初步确定行走机构的系统压力为25MPa 图 3 : 液压缸的行走状态图 向行走时, B口进油; A 口出油 向行走时, A口进油; B口出油 计算如下: 向 () 式中: 活塞杆直径,() 液压缸的理论推力, 系统压力,查手册取 查机械设计手册取D = 200 取速度比: 查机械设计手册取 = 1402.2.2 长船液压缸的流量计算: 式中 液体的运动速度 活塞的面积 确定纵向行走液压缸的型号 液压缸的型号说明: 双作用单活塞杆液压缸结构尺寸代号(液压缸直径/活塞杆直径) 活塞杆型式代号2.2.3 长船液压缸的力的计算 (1)推力计算 式中 液压缸推力 工作压力 活塞的作用面积 (2)拉力计算 式中 液压缸拉力 工作压力 活塞直径 活塞杆直径 液压缸有杆腔作用面积 2.2.4 长船液压缸的安装联结尺寸 图 4 : 长船液压缸的安装联结尺寸表 1 液压缸的安装联结尺寸缸径200 长船液压缸的长度为:行程 图 5 : 液压缸的安装联结部件 表 2 液压缸的安装联结部件尺寸缸径20090901201001001102.3 顶升液压缸的机构设计计算 2.3.1 顶升液压缸的载荷计算静压桩机的顶升,靠四个垂直固定在桩机大身上的液压缸提供动力,油缸只要克服静压桩机自身的重量即可。由几何学原理:三点即可确定一个平面,虽然有四个顶升油缸提供动力,但实际上很多时候真正工作的只有三个油缸。因此,载荷力为: 顶 2.3.2 顶升液压缸的活塞直径计算 () 式中 顶升油缸所受外载荷 =1568 系统压力 查机械设计手册,取 = 280 取速度比: 查机械设计手册,取 2.3.3 顶升液压缸的流量计算: 式中 液体的运动速度 活塞的面积 确定顶升液压缸的型号 液压缸的型号说明: 双作用单活塞杆液压缸结构尺寸代号(液压缸直径/活塞杆直径) 活塞杆型式代号2.3.4 顶升液压缸的力的计算 (1)推力计算 式中 顶升液压缸推力 工作压力 活塞的作用面积 (2)拉力计算 式中 液压缸拉力 工作压力 活塞直径 活塞杆直径 液压缸有杆腔作用面积 2.4 液压缸技术规格 表 3 液压缸技术规格 名称缸径AL(mm)活塞杆直径MM(mm)工作压力25MPa最大行程S(mm)速度比=2推力(KN)拉力(KN)长船行走液压缸2001407854002000顶升液压缸2802001537.5753.6 2.5 液压缸的校核2.5.1 长船液压缸活塞杆稳定性校核一般情况,当受拉杆件的应力达到屈服极限时,将引起塑性变形或断裂。细长杆件受压时,却表现出与强度失效全然不同的性质。当压力逐渐增加,但小于某一极限值时,杆件一直保持直线形状的平衡,这种平衡是稳定的。当压力逐渐增加到某一极限值时,压杆的直线平衡为不稳定,将转变为曲线形状的平衡,如果再继续加微小的侧向力使其发生弯曲,当干扰力解除后,它将保持曲线形状的平衡,不能恢复原有的直线形状。压杆丧失其直线形状的平衡而过渡为曲线平衡,称为失稳,也称屈曲。杆件失稳后压力的微小增加将引起弯曲变形的显著增大,杆件已经丧失了承载能力。图 6 : 活塞杆失稳活塞杆失稳时,应力不一定是很大,甚至可能会小于比例极限,按下式进行校核: 细长比: 式中 长度系数 =1 截面的惯性半径 杆件的长度即活塞杆的行程 = 将各值代入式得: 压杆稳定的极限值: 式中 材料的弹性模量,查机械设计手册,= 206 比例极限,查机械设计手册,=200将以上各数据代入式计算得: 长船活塞杆不属于大柔度杆,不能使用欧拉公式计算临界压力,因此,采用以实验结果为依据的直线公式: 式中 屈服极限,查机械设计手册取,=235、 直线公式系数,查机械设计手册取, 将以上各值代入上式得: 长船液压缸活塞杆属于小柔度压杆,受压时不会像大柔度压杆那样出现弯曲变形,主要因为应力达到屈服极限(塑性变形)或强度极限(脆性变形)而失效,应按强度来进行校核。 式中 临界应力 活塞杆受力 , =701 活塞杆横截面积 将以上各值代入上式得: 长船液压缸活塞杆满足稳定性要求2.5.2 顶升液压缸活塞杆稳定性校核同理可得:图 7 : 活塞杆失稳活塞杆失稳时,应力不一定是很大,甚至可能会小于比例极限,按下式进行校核: 细长比: 式中 长度系数 =1 截面的惯性半径 杆件的长度即活塞杆的行程 = 将各值代入式得: 压杆稳定的极限值: 式中 材料的弹性模量,查机械设计手册,= 206 比例极限,查机械设计手册,=200将以上各数据代入上式计算得: 顶升液压缸活塞杆不属于大柔度杆,不能使用欧拉公式计算临界压力,因此,采用以实验结果为依据的直线公式: 式中 屈服极限,查机械设计手册取,=235、 直线公式系数,查机械设计手册取, 将以上各值代入上式得: 顶升液压缸活塞杆属于小柔度压杆,受压时不会像大柔度压杆那样出现弯曲变形,主要因为应力达到屈服极限(塑性变形)或强度极限(脆性变形)而失效,应按强度来进行校核。 式中 临界应力 活塞杆受力 , = 701 活塞杆横截面积 将以上各值代入上式得: 顶升液压缸活塞杆满足稳定性要求3 行走机构的零件设计计算3.1 小车组件的计算静压打桩机的行走,由四只小车提供支撑力。由几何学原理:三点即可确定一个平面,虽然有四只小车提供支撑力,但实际上很多时候真正工作的只有三只小车。因此,小车的受力按下式进行计算:车式中 桩机正常工作时,小车的最大受力 桩机正常工作时,小车的最小受力由设计数据确定、的值 将以上各值代入上式得:车 3.2小车车轮的计算与校核小车车轮属于静压桩机的行走部件,在静压桩机的运行机构件均采用轮缘柱面车轮。通常情况下,车轮轮缘的高度约为2025,且轮缘具有一定的倾斜,一般情况下斜度为1:5。车轮的强度按车轮轮面接触强度来计算,车轮的接触强度与它的材料、轨道接触情况、车轮踏面等因素有关。为了计算车轮的接触应力,需要先计算出车轮的载荷3.2.1 小车车轮的载荷计算 其中 车 车 3.2.2 车轮接触强度校核 式中 速度系数,查机械设计手册,取=1.17 工作级别系数,查机械设计手册,取=1.12 曲率半径,取两个接触体中较大的值,=400 由轨道头与车轮曲率半径之比所确定的系数,=0.430 与材料有关的许用点接触应力常数,将以上各值代入式计算得: 车轮满足强度要求3.3 小车轴的设计计算静压桩机的行走小车均采用两根联结轴。每根轴的受力为: 图 8: 轴的受力图 图 9: 轴的剪切图 图 10: 轴的弯矩图 轴选用钢,调质处理,查机械设计手册, 轴的弯曲强度条件为: 轴与轴承采用基孔制配合,查机械设计手册,取 3.4 小车联结轴的校核小车联结轴在联结结合面处受剪,同时与被联结件孔壁相互挤压,破坏联结的主要形式有:轴被剪断、轴被压溃、孔壁被压溃。轴受的剪力为其强度条件为: 即: 联结轴材料选用钢,调质处理 查机械设计手册, 查机械设计手册,取 校核联结轴的强度条件为: 式中 轴的受压高度 轴的许用挤压应力 查机械设计手册, 初定联结轴的受压高度为 因此 联结轴满足联结的强度要求3.5 选定轴承并加以校核对缓慢摆动或低速旋转的轴承,应分别计算额定动载荷和额定静载荷,然后根据条件选择轴承。 3.5.1基本额定动载荷的计算 式中 基本额定动载荷计算值 当量动载荷 寿命系数,查机械设计手册定轴承使用寿命为,查机械设计手册取=1.815 速度系数,查机械设计手册,取=1.435 力矩载荷因数,力矩载荷较小时=1.5;力矩载荷较大时=2;取=1.5 冲击载荷因数,查机械设计手册,取=1.0 温度因数,查机械设计手册,取=1.0 轴承尺寸及性能表中所列径向基本额定动载荷当量动载荷的计算 式中 冲击载荷系数,取=1.8 径向载荷,取 轴向载荷,=0 径向动载荷系数,取=0.4 轴向动载荷系数,取=0 将各数据代入式 3.5.2基本额定静载荷的计算当量静载荷:两式中取大值式中 径向静载荷系数, 轴向静载荷系数, 径向载荷,取 轴向载荷,=0 按额定静载荷选择轴承,其基本公式为:式中 基本额定静载荷,N; 径向基本额定静载荷,查机械设计手册,取N; 当量静载荷,N; 安全系数,查机械设计手册,取 满足静载荷强度要求针对小车的负载情况,选用单列圆锥滚子轴承作为支撑体,可以承受以径向载荷为主,径向较大而轴向稍小的载荷,具有较好的支撑刚度和旋转精度。3.5.3初选轴承型号:30316 查机械设计手册,校核轴承寿命查机械设计手册,轴径,运动速度 3.5.4轴承寿命校核 轴承满足强度要求4 轨道的设计计算轨道要承载桩机的全部载荷,包括桩机自重和附加配重,是保证桩机正常定向运动的支撑零件。静压桩机的轨道通常采用P型铁路钢轨。为了保证机身的稳定,可增大与基础的接触面积。钢轨的底部采用
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。