目录.doc

电饭煲传感器外壳冲压工艺与模具设计【说明书+CAD】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图
编号:75979141    类型:共享资源    大小:3.41MB    格式:ZIP    上传时间:2020-04-26 上传人:柒哥 IP属地:湖南
40
积分
关 键 词:
说明书+CAD 电饭煲 传感器 外壳 冲压 工艺 模具设计 说明书 CAD
资源描述:
电饭煲传感器外壳冲压工艺与模具设计【说明书+CAD】,说明书+CAD,电饭煲,传感器,外壳,冲压,工艺,模具设计,说明书,CAD
内容简介:
毕业设计(论文)任务书I、毕业设计(论文)题目:电饭煲传感器外壳冲压工艺与模具设计与制造II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:设计原始资料:1零件图;2零件材料牌号及厚度:Q235,0.6;设计技术要求:1年生产纲领:80000件;2. 要求外文资料翻译忠实原文; 3. 要求编制的冲压工艺规程合理; 4. 要求设计的冲压模具满足加工要求; 5. 要求图纸设计规范,符合制图标准; 6. 要求毕业论文叙述条理清楚,设计计算正确,论文格式规范。III、毕 业设计(论文)工作内容及完成时间:1绘制零件图,收集、查阅有关资料,外文资料翻译(6000字符),撰写开题报告; 2.28 3.18 3周2对零件进行冲压工艺分析,确定工艺方案; 3.213.25 1周3计算、确定冲压力模具工作部分尺寸及公差,选取模具结构;3.284.8 2周4设计专用模具一套,绘制装配图,拆绘主要零件图;(折合A1图4张) 4.115.13 5周5任选模具一个主要工作零件,进行机加工艺规程设计; 5.165.27 2周6撰写毕业论文、毕业设计审查、毕业答辩。 5.306.24 4周 、主 要参考资料:1姜奎华主编. 冲压工艺与模具设计. 北京:机械工业出版社,2003.6 2解汝升. 冲压模具设计与制造技术. 北京:中国标准出版社,19973许发樾主编. 实用模具设计与制造手册. 北京:机械工业出版社,2001.2 4廖念钊等主编. 互换性与技术测量. 北京:中国计量出版社,2011.2第5版5. Wilson,F.W.Die design handbook MaGraw Hill 1990.6 航空工程 系(教研室) 机械设计制造及其自动化 专业类 0781053 班学生(签名):熊勇日期: 自 2011 年 2 月 28 日至 2011 年 6 月 24 日指导教师(签名):罗海泉助理指导教师(并指出所负责的部分):航空工程 系(室)主任(签名):姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。图纸清单代码图纸代码名称图号备注1XY-00电饭煲传感器外壳模具装配图A0附图2XY-01电饭煲传感器外壳零件图A4附图3XY-00-04托杆A4附图4XY-00-08凸模垫板A3附图5XY-00-09凸模压模板A3附图6XY-00-13凸凹模压模板A3附图7XY-00-15打杆A4附图8XY-00-20推件块A4附图9XY-00-21凸凹模A4附图10XY-00-22落料凹模A3附图11XY-00-23压边圈A4附图12XY-00-24拉深凸模A4附图13GB/T2855.10-90下模架A1附图14GB/T2855.9-90上模架A1附图15JB/T7646.3模柄A4附图16GB2861.6-81导套A4附图南昌航空大学科技学院学士学位(论文)外文翻译Capacitive Sensor Operation Part 1: The BasicsPart 1 of this two-part article reviews the concepts and theory of capacitive sensing to help to optimize capacitive sensor performance. Part 2 of this article will discuss how to put these concepts to work.Noncontact capacitive sensors measure the changes in an electrical property called capacitance. Capacitance describes how two conductive objects with a space between them respond to a voltage difference applied to them. A voltage applied to the conductors creates an electric field between them, causing positive and negative charges to collect on each objectCapacitive sensors use an alternating voltage that causes the charges to continually reverse their positions. The movement of the charges creates an alternating electric current that is detected by the sensor. The amount of current flow is determined by the capacitance, and the capacitance is determined by the surface area and proximity of the conductive objects. Larger and closer objects cause greater current than smaller and more distant objects. Capacitance is also affected by the type of nonconductive material in the gap between the objects. Technically speaking, the capacitance is directly proportional to the surface area of the objects and the dielectric constant of the material between them, and inversely proportional to the distance between them as shown.:In typical capacitive sensing applications, the probe or sensor is one of the conductive objects and the target object is the other. (Using capacitive sensors to sense plastics and other insulators will be discussed in the second part of this article.) The sizes of the sensor and the target are assumed to be constant, as is the material between them. Therefore, any change in capacitance is a result of a change in the distance between the probe and the target. The electronics are calibrated to generate specific voltage changes for corresponding changes in capacitance. These voltages are scaled to represent specific changes in distance. The amount of voltage change for a given amount of distance change is called the sensitivity. A common sensitivity setting is 1.0 V/100 m. That means that for every 100 m change in distance, the output voltage changes exactly 1.0 V. With this calibration, a 2 V change in the output means that the target has moved 200 m relative to the probe.Focusing the Electric FieldWhen a voltage is applied to a conductor, the electric field emanates from every surface. In a capacitive sensor, the sensing voltage is applied to the sensing area of the probe. For accurate measurements, the electric field from the sensing area needs to be contained within the space between the probe and the target. If the electric field is allowed to spread to other itemsor other areas on the targetthen a change in the position of the other item will be measured as a change in the position of the target. A technique called guarding is used to prevent this from happening. To create a guard, the back and sides of the sensing area are surrounded by another conductor that is kept at the same voltage as the sensing area itself. When the voltage is applied to the sensing area, a separate circuit applies the exact same voltage to the guard. Because there is no difference in voltage between the sensing area and the guard, there is no electric field between them. Any other conductors beside or behind the probe form an electric field with the guard instead of with the sensing area. Only the unguarded front of the sensing area is allowed to form an electric field with the target.DefinitionsSensitivity indicates how much the output voltage changes as a result of a change in the gap between the target and the probe. A common sensitivity is 1 V/0.1 mm. This means that for every 0.1 mm of change in the gap, the output voltage will change 1 V. When the output voltage is plotted against the gap size, the slope of the line is the sensitivity. A systems sensitivity is set during calibration. When sensitivity deviates from the ideal value this is called sensitivity error, gain error, or scaling error. Since sensitivity is the slope of a line, sensitivity error is usually presented as a percentage of slope, a comparison of the ideal slope with the actual slope.Offset error occurs when a constant value is added to the output voltage of the system. Capacitive gauging systems are usually zeroed during setup, eliminating any offset deviations from the original calibration. However, should the offset error change after the system is zeroed, error will be introduced into the measurement. Temperature change is the primary factor in offset error.Sensitivity can vary slightly between any two points of data. The accumulated effect of this variation is called linearity erro. The linearity specification is the measurement of how far the output varies from a straight line.To calculate the linearity error, calibration data are compared to the straight line that would best fit the points. This straight reference line is calculated from the calibration data using least squares fitting. The amount of error at the point on the calibration line furthest away from this ideal line is the linearity error. Linearity error is usually expressed in terms of percent of full scale (%/F.S.). If the error at the worst point is 0.001 mm and the full scale range of the calibration is 1 mm, the linearity error will be 0.1%.Note that linearity error does not account for errors in sensitivity. It is only a measure of the straightness of the line rather than the slope of the line. A system with gross sensitivity errors can still be very linear.Error band accounts for the combination of linearity and sensitivity errors. It is the measurement of the worst-case absolute error in the calibrated range. The error band is calculated by comparing the output voltages at specific gaps to their expected value. The worst-case error from this comparison is listed as the systems error band. In Figure 7, the worst-case error occurs for a 0.50 mm gap and the error band (in bold) is 0.010.Gap (mm)Expected Value (VDC)Actual Value VDC)Error (mm)0.5010.0009.8000.0100.755.0004.9000.0051.000.0000.0000.0001.255.0005.0000.0001.5010.00010.1000.005Figure 7. Error valuesBandwidth is defined as the frequency at which the output falls to 3 dB, a frequency that is also called the cutoff frequency. A 3 dB drop in the signal level is an approximately 30% decrease. With a 15 kHz bandwidth, a change of 1 V at low frequency will only produce a 0.7 V change at 15 kHz. Wide-bandwidth sensors can sense high-frequency motion and provide fast-responding outputs to maximize the phase margin when used in servo-control feedback systems; however, lower-bandwidth sensors will have reduced output noise which means higher resolution. Some sensors provide selectable bandwidth to maximize either resolution or response time.Resolution is defined as the smallest reliable measurement that a system can make. The resolution of a measurement system must be better than the final accuracy the measurement requires. If you need to know a measurement within 0.02 m, then the resolution of the measurement system must be better than 0.02 m.The primary determining factor of resolution is electrical noise. Electrical noise appears in the output voltage causing small instantaneous errors in the output. Even when the probe/target gap is perfectly constant, the output voltage of the driver has some small but measurable amount of noise that would seem to indicate that the gap is changing. This noise is inherent in electronic components and can be minimized, but never eliminated.If a driver has an output noise of 0.002 V with a sensitivity of 10 V/1 mm, then it has an output noise of 0.000,2 mm (0.2 m). This means that at any instant in time, the output could have an error of 0.2 m.The amount of noise in the output is directly related to bandwidth. Generally speaking, noise is distributed over a wide range of frequencies. If the higher frequencies are filtered before the output, the result is less noise and better resolution (Figures 8, 9). When examining resolution specifications, it is critical to know at what bandwidth the specifications apply.Capacitive Sensor Operation Part 2: System OptimizationPart 2 of this two-part article focuses on how to optimize the performance of your capacitive sensor, and to understand how target material, shape, and size will affect the sensors response.Effects of Target SizeThe target size is a primary consideration when selecting a probe for a specific application. When the sensing electric field is focused by guarding, it creates a slightly conical field that is a projection of the sensing area. The minimum target diameter is usually 130% of the diameter of the sensing area. The further the probe is from the target, the larger the minimum target size.Range of MeasurementThe range in which a probe is useful is a function of the size of the sensing area. The greater the area, the larger the range. Because the driver electronics are designed for a certain amount of capacitance at the probe, a smaller probe must be considerably closer to the target to achieve the desired amount of capacitance. In general, the maximum gap at which a probe is useful is approximately 40% of the sensing area diameter. Typical calibrations usually keep the gap to a value considerably less than this. Although the electronics are adjustable during calibration, there is a limit to the range of adjustment.Multiple Channel SensingFrequently, a target is measured simultaneously by multiple probes. Because the system measures a changing electric field, the excitation voltagefor each probe must be synchronized or the probes will interfere with each other. If they were not synchronized, one probe would be trying to increase the electric field while another was trying to decrease it; the result would be a false reading. Driver electronics can be configured as masters or slaves; the master sets the synchronization for the slaves in multichannel systems.Effects of Target MaterialThe sensing electric field is seeking a conductive surface. Provided that the target is a conductor, capacitive sensors are not affected by the specific target material; they will measure all conductorsbrass, steel, aluminum, or salt wateras the same. Because the sensing electric field stops at the surface of the conductor, target thickness does not affect the measurement中文翻译电容式传感器操作第一部分:基础这篇文章的第一部分回顾了电容式传感器的概念和理论来帮助我们优化电容式传感器的性能。第二部分讨论了怎样使这些概念去工作。 非接触式电容传感器测量的电特性变化称为电容。电容描述了有一定距离的两个导电物体怎样产生一个电压差。电压施加到导体上并产生电场,造成正负电荷聚集到每个导体上。如果电压的极性是相反的,那么电荷也是相反的。电容式传感器使用交流电压就会引起电子不断反转他们的位置。传感器就能检测出电子移动所产生的交流电流。电流的流量是由电容决定的,而电容是有导体的表面积和导体之间的距离决定的。表面积更大,距离更近的导体比小面积远距离导体能够引起更大的电流。导体之间介质的材料也影响电容。从技术上讲,电容是与导体的表面积和在导体之间介质的介电常数成正比的,与导体之间的距离成反比。公式如下:在典型的电容式传感应用,探针或传感器是导体中的一个,另一个则是测量对象。(利用电容式传感器来感应塑料和其他绝缘体将在本文的第二部分讨论。)传感器和被测对象的大小假定不变,这是由他们之间的材料确定。因此,电容的任何改变都是探针和目标之间的距离变化产生的。被校准的电子产生特定的电压变化电容也产生相应变化。这些电压变化是与距离变化成比例的。在给定距离上产生的电压变化叫做灵敏度。一个常见的灵敏度设置时1.0 V/100 m。这就意味着每改变100m的距离,输出就会变化1V。有了这个校准,一个2V的输出变化就意味着目标距离探测器发生了200m的变化。 关于电场 当电压应用于导体,电场从每个表面产生。在电容传感器中,感应电压应用到探头的感应区为了准确测量,感应区的电场需包含在探针与目标的空间内。如果电场可以传播到其他项目,或者目标的其他地区-在其他项目上这个位置的改变作为衡量在目标的这个位置上测量的变化。一种名为“守卫”的技术是用来防止这种情况发生。要创建一个守卫,感应区背部和四周都是被另一个导体包围,以使这个感应区本身为同一电压。当电压施加到感应区,一个单独的电路应用于完全相同的电压给守卫。因为在感应区和守卫之间没有电压差,所以在他们之间就没有电场。在探针周围或后面的导体能与守卫形成电场,而不是和感应区。只有无守卫的感应区允许和目标形成电场。定义灵敏度表示在目标和探头之间的差距变化时,输出电压的变化。一个常用灵敏度单位是1 V/0.1 mm。这意味着距离每改变0.1mm,输出电压改变1V。以距离为行坐标输出电压为纵坐标描点,这条线的斜率就是灵敏度。在校准时,就设置系统的灵敏度。当灵敏度偏离理想值,这是所谓的灵敏度误差,增益误差,缩放错误。由于灵敏度是一个直线的斜率,灵敏度错误通常是表现为一个百分比的斜坡,一对理想与实际斜率的比较。偏移误差发生时,常值被添加到系统的输出电压。在设置期间电容测量系统通常是“零”,从原来的校准中解决了偏移误差。但是在系统清零后,偏移误差应当改变,误差将被引入到测量。温度的变化是偏移误差的主要因素。灵敏度能够在数据的任何两点之间变化。这一变化的累积效应被称为线性误差。线性度规范是测量输出结果偏离直线多远。 为了计算线性误差,标定数据与最适合这些点的直线相比。这参考线是采用最小二乘拟合数据计算出的。校准线上的误差点中离基准线最远的点是线性误差。线性误差通常在百分之方面表示满量程(/ FS)的。如果在最低点误差为0.001毫米,全面的校准范围为 1毫米,线性误差为0.1。 请注意,线性误差不算到灵敏度误差中。这仅仅是该行的直线度测量,而不是直线的斜率。一个有着严重灵敏度错误的系统仍然可以非常好的线性的。 误差带是线性和灵敏度误差的组合。这是在校准测量范围内最坏的情况下测量的绝对误差。该误差带的计算方法是比较在输出电压和他们的预期值的具体差距。从这个比较最坏情况的错误被列为该系统的误差带。在图7中,最坏的情况下误差为0.50毫米的差距和误差带(粗体)是-0.010。间隔 (mm)预期值(VDC)实际指标 (VDC)误差 (mm)0.5010.0009.8000.0100.755.0004.9000.0051.000.0000.0000.0001.255.0005.0000.0001.5010.00010.1000.005图7:误差值带宽的定义是,当输出频率下降至-3分贝的频率,这也是所谓的截止频率。一个在信号水平-3分贝下降,是近30的跌幅。与15 kHz的带宽,为1V的低频率的变化,只会在15千赫0.7V的变化。宽的带宽传感器可以感知高频移动,并提供快速响应,在使用反馈的伺服控制系统中以最大限度地输出相位裕度;但是,低带宽的传感器会减少输出噪声,这意味着更高的分辨率。有些传感器提供可选择的带宽,以最大限度地提高或分辨率或响应时间
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:电饭煲传感器外壳冲压工艺与模具设计【说明书+CAD】
链接地址:https://www.renrendoc.com/p-75979141.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!