


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考三角函数1.特殊角的三角函数值:sin= 0cos= 1tan= 0sin3=cos3=tan3=sin=cos=tan=1sin6=cos6=tan6=sin9=1cos9=0tan9无意义2角度制与弧度制的互化: 36918273603.弧长及扇形面积公式弧长公式: 扇形面积公式:S=.-是圆心角且为弧度制。r-是扇形半径4.任意角的三角函数设是一个任意角,它的终边上一点p(x,y), r=(1)正弦sin= 余弦cos= 正切tan=(2)各象限的符号: + -xy+O +xyO + +yOsin cos tan5.同角三角函数的基本关系:(1)平方关系:sin2+ cos2=1。(2)商数关系:=tan ()6.诱导公式:记忆口诀:奇变偶不变,符号看象限。,口诀:函数名称不变,符号看象限,口诀:正弦与余弦互换,符号看象限7正弦函数、余弦函数和正切函数的图象与性质倍角公式sin2=2sincoscos2=cos2-sin2=2cos2-1=1-2sin2两角和与差的三角函数关系sin()=sincoscossincos()=coscossinsin8、三角函数公式:降幂公式: 升幂公式 : 1+cos= cos21-cos= sin29正弦定理:.10.余弦定理:;.11三角形面积定理.12.面积公式(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;(3);(4)2R2sinAsinBsinC。(R为外接圆半径)(5);(6);(7)rs。13解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C = ;(2)边与边关系:a + b c,b + c a,c + a b,ab c,bc b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的变形形式有:a = 2R sinA,。14三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;(2)在ABC中,熟记并会证明:A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字技术对政策实施的影响分析试题及答案
- 公共政策对社区发展的影响试题及答案
- 西方国家公共服务的质量与效率分析试题及答案
- 数据包流量分析技巧试题及答案
- 探索西方政治制度的社会基础试题及答案
- 网络工程师考试大纲解析与试题及答案
- 机电工程新技术的市场价值评估试题及答案
- 软件设计师考试的知识延展试题与答案
- 随时查阅的项目管理师试题及答案
- 战略性公共政策的案例分析试题及答案
- 2025年辽宁省本溪市中考一模英语试题(含答案)
- 3D打印技术考试试卷及答案
- 《物业管理师》三级测试题及参考答案
- 人教版六年级上册数学百分数应用题专题分类复习(课件)
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
- 【MOOC期末】《中国文化传承与科技创新》(北京邮电大学)中国慕课期末网课答案
- 跨学科实践活动5基于碳中和理念设计低碳行动方案九年级化学人教版(2024)上册
- 计算与人工智能概论知到智慧树章节测试课后答案2024年秋湖南大学
- 隧道工程安全文明施工组织设计方案
- 2024年关于培训机构退费的协议书模板
- 厂房出租三方协议书范文模板
评论
0/150
提交评论