《14.1.4 整式的乘法(多项式乘以多项式)》.doc_第1页
《14.1.4 整式的乘法(多项式乘以多项式)》.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

皂市中学八年级(数学)备课组 集 体 备 课 教 案主 备: 辅 备:上课时间年 月 日 (星期 )本周第( )课时总( )课时上课教师班 级八年级( )班课题:1414 整式的乘法(多项式乘以多项式)三维 目标知识与技能多项式乘以多项式的运算法则及其应用过程与方法理解多项式乘以多项式的算理,发展有条理的思考及表达能力情感态度与价值观提倡多样化的算法,培养学生的创新精神与能力教学重点:多项式与多项式相乘的运算法则的探索教学难点:灵活运用法则进行计算和化简教学方法与手段:自主探索法教学过程:mnabaa一复习旧知讲评作业二创设情景,引入新课(课本)如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长了b米,加宽了n米你能用几种方法求出扩大后的绿地面积?一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b)(mn)米2由于上述两种计算结果表示的是同一个量,因此(a +b)(mn)= am+an+bm+bn教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b)(mn)=am+an+bm+bn进行分析,可以把mn看做一个整体,运用单项式与多项式相乘的法则,得(a +b)(mn)a(mn)b(mn),再利用单项式与多项式相乘的法则,得a(mn)b(mn)= am+an+bm+bn学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加三、应用提高、拓展创新例6(课本):计算(1)(3x+1)(x+2) ; (2) (x 8y)(xy) ; (3) (x+y)(x2xy+y2)进行运算时应注意:不漏不重,符号问题,合并同类项练习:(课本)102页 1 2补充例题:1. (a+b)(ab)(a+2b)(ab)2. (3x43x2+1)(x4+x22) 3. (x1)(x+1)(x2+1)4. 当a=-1/2时,求代数式 (2ab)(2a+b)+(2ab)(b4a)+2b(b3a)的值教师小结:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加 把多项式相乘的问题转化为单项式与多项式相乘的问题布置作业:P105习题14.1第5题板书设计:1414 整式的乘法(多项式乘以多项式)多项式与多项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论