2020版高考数学大二轮复习专题五解析几何第一讲直线与圆限时规范训练文.docx_第1页
2020版高考数学大二轮复习专题五解析几何第一讲直线与圆限时规范训练文.docx_第2页
2020版高考数学大二轮复习专题五解析几何第一讲直线与圆限时规范训练文.docx_第3页
2020版高考数学大二轮复习专题五解析几何第一讲直线与圆限时规范训练文.docx_第4页
2020版高考数学大二轮复习专题五解析几何第一讲直线与圆限时规范训练文.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一讲 直线与圆1(2019濂溪区校级期末)已知直线l1:x2y10与直线l2:xky30平行,则实数k的值为()A2B2C D.解析:直线l1:x2y10与直线l2:xky30平行,解得k2.故选A.答案:A2(2019菏泽一模)圆(x2)2y21与直线3x4y20的位置关系是()A相交 B.相切C相离 D.以上三种情况都有可能解析:圆心(2,0)到直线3x4y20的距离d大于圆的半径r1,所以圆与直线相离,故选C.答案:C3(2019东莞市期末测试)过点(2,1)且在两坐标轴上的截距相等的直线方程为()Ax2y0或xy10Bx2y0或xy30Cxy30或xy10Dx2y0解析:直线过点(2,1),且在两坐标轴上的截距相等,当截距为0时,直线方程为:x2y0;当直线不过原点时,斜率为1,直线方程:xy30.直线方程为x2y0或xy30.故选B.答案:B4设直线yx与圆O:x2y2a2相交于A,B两点,且|AB|2,则圆O的面积为()A B.2C4 D.8解析:根据题意,圆O:x2y2a2的圆心为(0,0),半径r|a|,圆心到直线yx的距离d1,又由弦长|AB|2,则有a2124,则圆O的面积为Sa24;故选C.答案:C5(2019郑州模拟)已知圆(xa)2y21与直线yx相切于第三象限,则a的值是()A. B.C D.2解析:依题意得,圆心(a,0)到直线xy0的距离等于半径,即有1,|a|.又切点位于第三象限,结合图形(图略)可知,a,故选B.答案:B6(2019兴庆区校级一模)与3x4y0垂直,且与圆(x1)2y24相切的一条直线是()A4x3y6 B.4x3y6C4x3y6 D.4x3y6解析:根据题意,要求直线与3x4y0垂直,设其方程为4x3ym0,若该直线与圆(x1)2y24相切,则有2,解得:m6或14,即要求直线的方程为4x3y6或4x3y14,故选B.答案:B7在平面直角坐标系xOy中,已知A(1,0),B(0,1),则满足|PA|2|PB|24且在圆x2y24上的点P的个数为()A0 B.1C2 D.3解析:设P(x,y),则由|PA|2|PB|24,得(x1)2y2x2(y1)24,所以xy20.求满足条件的点P的个数即为求直线与圆的交点个数,圆心到直线的距离d0)相交于A,B两点,若|AB|6,则圆C的标准方程为()A(x1)2(y2)236B(x1)2(y2)225C(x1)2(y2)216D(x1)2(y2)249解析:化圆C:x2y22x4y5r20(r0)为(x1)2(y2)2r2,可得圆心坐标为(1,2),半径为r,由圆心(1,2)到直线l:3x4y150的距离d4,且|AB|6,得r2324225.圆C的标准方程为(x1)2(y2)225.故选B.答案:B10(2019宁夏银川九中模拟)直线l:kxy40(kR)是圆C:x2y24x4y60的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. B.C. D.2解析:圆C:x2y24x4y60,即(x2)2(y2)22,表示以C(2,2)为圆心,为半径的圆由题意可得,直线l:kxy40经过圆心C(2,2),所以2k240,解得k3,所以点A(0,3),故直线m的方程为yx3,即xy30,则圆心C到直线m的距离d,所以直线m被圆C所截得的弦长为2.故选C.答案:C11(2018高考全国卷)直线xy20分别与x轴,y轴交于A,B两点,点P在圆(x2)2y22上,则ABP面积的取值范围是()A2,6 B.4,8C,3 D.2,3解析:设圆(x2)2y22的圆心为C,半径为r,点P到直线xy20的距离为d,则圆心C(2,0),r,所以圆心C到直线xy20的距离为2,可得dmax2r3,dmin2r.由已知条件可得AB2,所以ABP面积的最大值为ABdmax6,ABP面积的最小值为ABdmin2.综上,ABP面积的取值范围是2,6故选A.答案:A12(2019让胡路区校级二模)已知直线l:axby30与圆M:x2y24x10相切于点P(1,2),则直线l的方程为_解析:根据题意,圆M:x2y24x10,即(x2)2y25,其圆心M(2,0),直线l:axby30与圆M:x2y24x10相切于点P(1,2),则P在直线l上且MP与直线l垂直,kMP2,则有,则有b2a,又由P在直线l上,则有a2b30,解可得a1,b2,则直线l的方程为x2y30;故答案为:x2y30.答案:x2y3013过点M的直线l与圆C:(x1)2y24交于A,B两点,C为圆心,当ACB最小时,直线l的方程为_解析:易知当CMAB时,ACB最小,直线CM的斜率为kCM2,从而直线l的斜率为kl,其方程为y1,即2x4y30.答案:2x4y3014(2019泸州期末测试)已知圆C的圆心在直线x2y0上,且经过点M(0,1),N(1,6)(1)求圆C的方程;(2)已知点A(1,1),B(7,4),若P为圆C上的一动点,求|PA|2|PB|2的取值范围解析:(1)设圆心C(a,b)则a2b0,则a2b,由|MC|NC|得,解得b2,a4,圆的半径r5,圆C的方程为:(x4)2(y2)225.(2)设P(x,y),则(x4)2(y2)225,即x2y258x4y则|PA|2|PB|2(x1)2(y1)2(x7)2(y4)22x22y216x10y671016x8y16x10y67772y,3y7,63772y83故|PA|2|PB|2的取值范围是63,8315(2019鹤壁期末检测)已知圆O:x2y24,直线l:ykx4.(1)若直线l与圆O交于不同的两点A,B,当AOB时,求k的值;(2)若EF,GH为圆O:x2y24的两条相互垂直的弦,垂足为M(1,),求四边形EGFH的面积S的最大值解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论