题目审定表.doc

RL7050H0总布置设计【说明书+CAD】

收藏

压缩包内文档预览:
预览图
编号:76688847    类型:共享资源    大小:2.47MB    格式:ZIP    上传时间:2020-04-26 上传人:柒哥 IP属地:湖南
40
积分
关 键 词:
说明书+CAD RL7050H0 布置 设计 说明书 CAD
资源描述:
RL7050H0总布置设计【说明书+CAD】,说明书+CAD,RL7050H0,布置,设计,说明书,CAD
内容简介:
SY-025-BY-2毕业设计(论文)任务书学生姓名赵清涛系部汽车与交通工程学院专业、班级车辆工程 07-11班指导教师姓名李涵武职称副教授从事专业车辆工程是否外聘是否题目名称 RL7050H0总布置设计一、设计(论文)目的、意义设计的小型汽车为一种乘用车,亦可易于比赛和娱乐休闲。本课题的选择充分考虑了研究课题对汽车车辆工程专业学生学习和工作的指导作用,对本课题的研究能够使学生了解专用汽车改装设计方法,通过本课题的研究学生可以完成理论课程的实践总结,获得一定的工程设计工作方法。二、设计(论文)内容、技术要求(研究方法) 进行一种微型乘用车的总体设计;面向单件生产;设计内容包括:整车总体参数的确定,总体方案的选择与分析,主要总成的计算选择和步骤,运动校核分析,整车性能的分析。要求:(1) 技术指标满足“FSAE”要求;(2) 不进行总成部件的详细设计;(3) 未详述指标和要求按“汽车设计”。三、设计(论文)完成后应提交的成果全部图纸均要求计算机绘图;合计图量A0 3张;提交设计说明书1份,字数大于1.5万字;符合规范要求; 四、设计(论文)进度安排1、调研、资料收集,完成开题报告 第1、2周2、方案设计与分析 第3周 3、总体参数的选定 第4周4、整车各总成的布置 第5、6周 5、运动校核 第7周 6、期中检查 设计修正(一) 第8周 7、完成设计图纸 第9、10周 8、整车性能计算分析;整车设计修正(二);第11周 9、完成毕业设计说明书 第12周 10、提交指导教师审核、设计修正(三) 第13、14周、11、设计评阅、设计修正(四) 第15周、第16周 12、毕业设计答辩 第17周 五、主要参考资料1、 期刊类:道路与公路类,筑路机械或工程机械类,交通工程类,有关大学学报等(五年内)。2、 科技图书和教材:机械设计类、制图类、及相关专业书; 推荐:徐达.专用汽车结构与设计.北京:北京理工大学出版社;3、 设计手册:机械设计手册等;4、 网络资源:检索关键词:自卸汽车,专用汽车改装设计等;其它:相关产品广告,参观有关产品展览会。六、备注指导教师签字:年 月 日教研室主任签字: 年 月 日本科学生毕业设计RL7050H0总布置设计系部名称: 汽车与交通工程学院 专业班级: 车辆工程 07-11班 学生姓名: 赵清涛 指导教师: 李涵武 职 称: 副教授 黑 龙 江 工 程 学 院二一一年六月The Graduation Design for Bachelors DegreeThe Layout Design of RL7050H0 Candidate:Zhao QingtaoSpecialty:Vehicle EngeeringClass: 07-11Supervisor:Associate Prof. Li HanwuHeilongjiang Institute of Technology2011-06HarbinSY-025-BY-3毕业设计(论文)开题报告学生姓名赵清涛系部汽车与交通工程学院专业、班级车辆工程07-11班指导教师姓名李涵武职称副教授从事专业车辆工程是否外聘是否题目名称RL7050H0总布置设计一、课题研究现状,选题的目的、依据和意义1、研究现状 近年来,汽车技术突飞猛进,方程式赛车也逐步被大多数人所了解,Formula SAE,是由各国SAE,即汽车工程师协会举办的面向在读或毕业7个月以内的本科生或研究生举办的一项学生方程式赛车比赛,要求在一年的时间内制造出一辆在加速、刹车、操控性方面有优异的表现并且足够稳定耐久,能够成功完成规则中列举的所有项目业余休闲赛车。自1981年创办以来,FSAE已发展成为每年由7个国家(美国、英国、澳大利亚、日本、意大利、德国及巴西)举办的9场赛事所组成,并有数百支来自全球顶级高校的车队参与的青年工程师盛会。 SAE方程式(Formula SAE)系列赛源于1978年。第一次比赛于1979年在美国波斯顿举行,13支队伍中有11支完赛。当时的规则是制作一台5马力的木制赛车。SAE方程式(Formula SAE)系列赛将挑战本科生、研究生团队构思、设计与制造小型具有越野性能的方程式赛车的能力。为给车队最大的设计弹性和自我表达创意和想象力的空间,在整车设计方面将会限制很少。赛前车队通常用8至12个月组的时间设计、建造、测试和准备赛车。在与来自世界各地的大学代表队的比较中,赛事给了车队证明和展示其创造力和工程技术能力的机会。 2009年中国国产汽车产销分别为1379.10万辆和1364.48万辆,首次成为世界汽车产销第一大国。汽车从中国人眼中的奢侈品到代步工具,到跃居世界汽车产销量第一的头把交椅,中国只用了短短十年时间。回顾十年来中国汽车工业的突飞猛进,一浪高过一浪的市场消费力,驱使中国一跃成为全球最大的汽车消费大国,而非真正意义上的汽车产业强国。中国汽车工业一直是在借鉴和应用,国外汽车一百多年来成熟的技术和制造工艺一路走来,而缺乏自主创新研发新技术的能力和人才培育。 中国大学生方程式汽车大赛(以下简称FSAE)是中国汽车工程学会及其合作会员单位,在学习和总结美、日、德等国家相关经验的基础上,结合中国国情,精心打造的一项全新赛事。我国从2006年起开始组建FSAE车队。湖南大学、上海交通大学、厦门理工大学与同济大学自2007年至2009年共参加了在美国和日本举办的4场FSAE赛事,获得了多个单项奖及新秀奖。为搭建国内优秀汽车人才的选拔平台,培养和提高汽车专业学生的综合素质,2010年第一届中国FSAE由中国汽车工程学会、中国二十所大学汽车院系、国内领先的汽车传媒集团易车(BITAUTO)联合发起举办。中国FSAE秉持“中国创造擎动未来”的远大理想,立足于中国汽车工程教育和汽车产业的现实基础,吸收借鉴其他国家FSAE赛事的成功经验,打造一个新型的培养中国未来汽车产业领导者和工程师的交流盛会,并成为与国际青年汽车工程师交流的平台。中国FSAE致力于为国内优秀汽车人才的培养和选拔搭建公共平台,FSAE要求各参赛队按照赛事规则和赛车制造标准,自行设计和制造方程式类型的小型单人座休闲赛车,并携该车参加全部或部分赛事环节。比赛过程中,参赛队不仅要阐述设计理念,还要由评审裁判对该车进行若干项性能测试项目,通过全方位考核,提高学生们的设计、制造、成本控制、商业营销、沟通与协调等五方面的综合能力,全面提升汽车专业学生的综合素质,为中国汽车产业的发展进行长期的人才积蓄,促进中国汽车工业从“制造大国”向“产业强国”的战略方向迈进。2、目的、依据和意义 汽车总布置设计是新车型开发的第一道工序,而新车型总体方案的确定是总布置设计的第一步。首先通过充分准备和综合分析,选择一个合理的整车方案,并经过一定的程序将其定下来。方案确定后,进行准确布置和计算,并为各总成下一步开展的工作打好基础、准备条件、提出要求并与各专业组协同完成全部的设计,共同实现整车的总目标。一种新车型的投产,除产品开发过程外,还要做大量的生产准备工作,如投入资金设备厂房、人员及制定一整套相关工艺等。这些都是为了保证整车能够稳定的大量的投入生产,并确保其整车性能和质量能被客户接受,所以整车总体方案和全部设计内容,也直接决定着工厂的投入。因此,总布置工作方案选择、布置、和计算,都是非常重要的,而且是不可缺少的。做好整车设计工作,必须做好以下两点:第一、要能准确地分析市场形势、了解客户的心理状态、车辆使用特点,熟悉工厂的生产条件,以便真正确定出合理的整车方案;第二、要有独立工作的能力。因为方案确定后,实现该方案的所有布置、计算及整车的开发工作,基本上是由一个人来完成,所以要求设计者工作不应该有任何失误,否则会造成反工和浪费,甚至失掉抢占市场的机会。因此要求设计者必须具有严谨、认真、细致、负责的精神,在整个开发过程中能协调和解决各方面问题和矛盾,使设计产品质量达到设计要求。总布置工作虽然以完成全部图纸及技术文件资料来标志着阶段性的结束,但还应该进行整车装配图的校核工作,即利用已完成的全部图纸或三维数模进行全面的细致的整车装置的图面及运动校核,及时发现问题、解决问题,使设计中存在的问题消除在试制和试装车之前。总布置设计在整车开发的过程中,占有非常重要的位置,必须认真做好这项工作。 目前,中国汽车工业已处于大国地位,但还不是强国。从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。 此次对大学生方程式赛车的总体布置进行设计,其目的主要有:一是重点培养学生的设计、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;二是通过设计交流创造学术竞争氛围,为师生之间、同学之间提供良好的交流平台,进而推动学科建设的提升; 汽车总体布置设计是新车型开发的第一道工序,其在提高和检验汽车行业院校学生的综合素质,为汽车工业健康、快速和可持续发展积蓄人才,对增进产、学、研三方的交流与互动合作等方面具有十分广泛的意义。 毫无疑问,对于对汽车的了解仅限于书本和个人驾乘体验的大学生而言,能够独立的完成一辆纯粹的高性能的赛车的总体布置设计,是一段非常富有挑战的过程,同时也是一段受益颇丰的过程。在天马行空的幻想、大脑一片空白的开始、兴奋的初步设计、激烈的争执、无可奈何的妥协、令人抓狂的一次次返工、绞尽脑汁的解决难题之后,设计者能获得的不仅仅是CATIA、UG、ANSYS等软件的熟练运用以及对焊接、定位、机加工等技术特征的掌握,更有汽车工程师的基本素养和丰富实践经验。二、设计(论文)的基本内容、拟解决的主要问题1、研究的基本内容(1)FSAE赛车总体结构的特点与分析;(2)分析赛车车架的特点,进行FSAE赛车车架的设计,分析其优缺点;(3)总成部件(发动机、变速器、转向机构、制动系统、悬架等机构)的选择、设计以及优缺点的分析;(4)整车布置后的各总成部件的运动校核;(5)整车性能分析,包括燃油经济性、动力性能、制动性能、安全性能等;(6)撰写设计说明书,绘制整车二维装配图以及零部件结构图。2、拟解决的主要问题(1)对FSAE赛车车架的设计;(2)对发动机、变速器、转向机构、制动系统、悬架等机构的匹配及设计;(3)各总成部件的改进及校核;(4)整车性能的分析,包括燃油经济性、动力性能、制动性能、安全性能等。三、技术路线(研究方法)总布置设计的准备整车型式的选择初步确定主要“目标参数”尺寸参数、质量参数的确定各相关总成匹配布置初步绘制整车总布置图绘制整车性能分析运动校核各总成的布置总布置设计修正撰写设计说明书,绘制二维整车总布置图绘制形成研究成果1.市场调查2.制定设计目标1.发动机类型2.驾驶室形式3.轮胎的选择1.主要目标参数2.发动机的最大功率及转速3.发动机的最大扭矩及转速4.传动系速比1.车身总布置设计2.发动机总布置设计3.转向节、车轮总成和前制动器总成布置设计1.发动机以及传动系布置2.驾驶室布置3.悬架布置4.车架总成外形以及横梁布置5.转向系布置6.制动系布置7.进、排气系统的布置8.操纵系统的布置NNYY四、进度安排1、调研、资料收集,完成开题报告 第1、2周(2月28日3月13日)2、方案设计与分析 第3周(3月13日3月20日)3、总体参数的选定 第4周(3月20日3月27日)4、整车各总成的布置 第5、6周(3月27日4月10日)5、运动校核 第7周(4月10日4月17日)6、期中检查 设计修正(一) 第8周(4月17日4月24日)7、完成设计图纸 第9、10周 (4月24日5月8日)8、整车性能计算分析;整车设计修正(二);第11周(5月8日5月15日)9、完成毕业设计说明书 第12周(5月15日5月22日)10、提交指导教师审核、设计修正(三) 第13、14周(5月22日6月5日)11、设计评阅、设计修正(四) 第15周、第16周(6月5日6月19日)12、毕业设计答辩 第17周(6月19日6月24日)五、参考文献1 勾治践,鲍明全. 基于ADAMS/VIEW的双横臂式独立悬架机构运动学分析 J. 机械设计与制造, 2007, (8) _3 . 2 刘江南,韩旭,陈羽等. 双横臂式前独立悬架的改进遗传算法优化 J. 中国机械工程, 2007, 18 (22) _4 . 3 陈俊. 基于双横臂独立悬架对轿车转向机构优化设计 D.合肥工业大学, 2007. 4 勾治践,鲍明全. 基于ADAMS/VIEW的双横臂式独立悬架转向梯形机构断开点位置的仿真分析 J. 机械设计, 2007, 24 (3) _3 . 5 鲁春艳. 基于UG的齿轮齿条式转向器的虚拟设计与分析 J. 苏州市职业大学学报, 2009, 20 (1) _4 . 6 张帮琴. 齿轮齿条式机械转向器异响优化设计 J. 汽车零部件, 2009, (9) _3 . 7 刘冰. 齿轮齿条转向器的建模及分析 J. 上海工程技术大学学报, 2006, 20 (1) _4 . 8 周祥基. 汽车转向传动机构的类型分析与优化设计 D.东南大学, 2005. 9 阳鹏. 齿轮齿条式转向器综合试验台测控系统的设计与开发 J. 装备制造技术, 2009, (8) _3 . 10 张松青,赵晓运. 齿轮齿条传动机构参数的优化研究 J. 煤矿机械, 2007, 28 (12) _3 . 11 方家. 某矿用越野车总体设计 D.南京理工大学, 2009. 12 聂创业. 基于多体整车模型的驾驶室悬置隔振系统优化设计平台开发 D.武汉理工大学, 2007. 13 曾志强. 小型轮式甘蔗收获机总体研究及车架的设计分析 D.广西大学, 2007. 14 苏信杰. 混合动力城市客车总体设计与控制策略的研究 D.合肥工业大学, 2009. 15 李乐. 四轮独立驱动电动车控制系统的设计 D.武汉理工大学, 2010. 16 吴亚祥. 野马混合动力电动汽车总体结构与控制系统方案研究 D.四川大学, 2006. 17 杨晓明,潘双夏,邱清盈等. 面向整车性能的盘式制动器协同仿真 J. 农业机械学报, 2007, 38 (2) _4 . 18 韩智慧. 某商用车驾驶室空气悬置及整车性能分析 D.西南交通大学, 2010. 19 高传宝,宋艳冗,李英等. GT-Power模型分析在整车排气噪声性能方面的应用 J. 汽车技术, 2009, (12) _3 . 20 陈晓新. 基于刚柔耦合的整车动力学建模与悬架隔振性能分析 D.合肥工业大学, 2010. 21 柳杨. 悬架的KC特性对整车操纵稳定性影响的初步研究 J. 机械设计与制造, 2010, (9) . 22 钱德猛,程立望,朱凌云等. 一种商务车的整车噪声性能试验分析 J. 现代制造工程, 2007, (4) _4 . 23 郭伟. 汽车前悬架的优化设计及整车稳态转向特性的研究 D.西南交通大学, 2008. 24 赵海宾. 汽车整车性能测试分析系统的研究与开发 D.河北工业大学, 2007. 25 江沿. 轿车后悬架运动学与整车操稳性仿真 D.南京信息工程大学, 2010. 26 许文娟. 汽车制动性测试分析系统的研究 D.河北工业大学, 2008. 27 陈宗好. 汽车动力传动系分析、优化匹配的研究及软件开发 D.合肥工业大学, 2006. 28 方英武,张永芳,张广鹏等. 车架结构动力学特性边界元法解析 J. 交通运输工程学报, 2005, 5 (4) _4 . 29 徐晓娜. 微型客车车身有限元分析及车架结构优化 D.南京航空航天大学, 2009. 30 石磊. 某特种车辆一体化复合车架结构分析研究 D.南京理工大学, 2008. 31 胡爱华,李左龙,黄彦等. 特种越野车底盘车架结构基本力学性能仿真计算 A. 中国宇航学会发射工程与地面设备专业委员会学术会议论文集C. 2003 . 32 朱喆. 越野汽车双横臂式悬架系统平顺性计算及优化 J. 沈阳理工大学学报, 2007, 26 (5) _4 .33成大先.机械设计手册M.北京:化学工业出版社,2004.34Chieh ChenLateral Control of Commercial Heavy VehiclesVehicle System Dynamics2002335Richard SwiftFlexible Body Contact for Modeling Squeal in Braking SystemsMDI North American IJsers Conference2002六、备注指导教师意见:签字: 年 月 日毕业设计(论文)开题报告设计(论文)题目:RL7050H0总布置设计 院 系 名 称: 汽车与交通工程学院 专 业 班 级: 车辆工程07-11 学 生 姓 名: 赵清涛 导 师 姓 名: 李涵武 开 题 时 间: 2011年2月28日 指导委员会审查意见: 签字: 年 月 日黑龙江工程学院本科生毕业设计摘 要RL7050H0总布置设计是在中国大学生方程式汽车大赛的基础上进行的。首先通过充分准备和综合分析,选择一个合理的整车方案,并经过一定的程序将其定下来。方案确定后,进行准确布置和计算,并为各总成下一步开展的工作打好基础、准备条件、提出要求并与各专业组协同完成全部的设计,共同实现整车的总目标。汽车总布置设计参考同类车型有关数据作为借鉴,重新选定各总成部件,重新布置。提出汽车的长、宽、高、轴距等控制尺寸,轴荷的分布范围以及动力总成、散热器、前后悬架、传动轴与车轮等轮廓尺寸和位置,初步确定新车型的设计硬点。从而保证所设计的汽车不仅在预定的使用条件下具有良好的使用性能、重量轻、寿命长、结构简单、使用方便、效率高、经济性好,制造简单,便于维修。总布置设计在整车开发过程中起到非常重要的作用。关键词:总布置设计;方程式赛车;总成匹配;车型;控制尺寸ABSTRACTRL7050H0 Layout Design Formula cars in the Chinese university students on the basis of competition. First, through the full preparation and comprehensive analysis of vehicle to select a reasonable solution, and after certain procedures to be laid down. Plan was finalized, the exact layout and calculation, and the next step for the assembly to lay the foundation work in preparation for the conditions, request and coordination with the professional group to complete all of the design together to achieve the overall objective of the vehicle. General layout of car design reference data as a reference on similar models, re-selected parts of the assembly, re-arranged. Proposed vehicle length, width, height, wheelbase and other control dimensions, axle load distribution range and power train, radiator, front and rear suspension, drive shafts and wheels outline size and location of initial hard to determine the design of new models point. Designed to ensure the car is not only the intended conditions of use with good performance, light weight, long life, simple structure, onvenient operation, high efficiency, good economy, manufacturing is simple and easy maintenance. Layout design in the vehicle development process play a very important role.Key words:The layout design;Formula car;Assembly matching;Models;Control dimensionsII目 录摘要IAbstractII第1章 绪论11.1 FSAE方程式研究现状11.2 FSAE方程式目的、依据和意义2第2章 总布置设计准备及整车型式选择42.1 总布置设计的准备42.1.1 市场调研42.1.2 样车分析52.1.3 制定设计目标62.2 整车型式的选择62.2.1 发动机的种类和布置型式62.2.2 驾驶室的型式82.2.3 轮胎的选型102.2.4 转向机构型式的选择112.2.5 制动器型式的选择132.2.6 悬架布置形式162.2.7 差速器型式的选择182.3 本章小结20第3章 新车型主要目标参数的初步确定213.1 几个主要“目标参数”的确定213.2 发动机最大功率及其转速213.3 发动机最大扭矩及其转速223.4 传动系速比的选择223.4.1 最小传动比的选择233.4.2 最大传动比的选择243.4.3 变速器档位数的选择253.5 本章小结25第4章 尺寸参数与质量参数的初步确定264.1 轿车的级别与载荷确定264.2 轿车主要参数的确定264.2.1 驾驶员单元264.2.2 整车外形尺寸的确定294.3 本章小结30第5章 各总成的匹配及总布置图绘制315.1 各相关总成的匹配315.1.1 车身总布置设计315.1.2 发动机总布置设计315.1.3 转向节、车轮总成与前制动器总成的布置设计315.2 整车总布置图绘制325.2.1 整车布置的基准线325.2.2 总布置图绘制的基本原则335.3 本章小结33第6章 主要总成的布置及其硬点概述346.1 各总成的布置346.1.1 发动机及传动系的布置346.1.2 驾驶室及悬架的布置356.1.3 车架总成外形及转向系的布置366.1.4 制动系及进、排气系统的布置366.2主要总成硬点概述376.2.1 整车设计基准376.2.2 总体设计方案及主要硬点376.3 本章小结41第7章 运动校核427.1 轮胎运动校核427.2 转向传动装置与悬架共同工作校核427.3 制动力匹配校核427.3.1 制动力匹配基本理论公式427.3.2 RL7050H0赛车制动力匹配校核437.4 本章小结45结论46参考文献47致谢49附录A50附录B70第1章 绪 论1.1 FSAE方程式研究现状近年来,汽车技术突飞猛进,方程式赛车也逐步被大多数人所了解,Formula SAE,是由各国SAE,即汽车工程师协会举办的面向在读或毕业7个月以内的本科生或研究生举办的一项学生方程式赛车比赛,要求在一年的时间内制造出一辆在加速、刹车、操控性方面有优异的表现并且足够稳定耐久,能够成功完成规则中列举的所有项目业余休闲赛车。自1981年创办以来,FSAE已发展成为每年由7个国家(美国、英国、澳大利亚、日本、意大利、德国及巴西)举办的9场赛事所组成,并有数百支来自全球顶级高校的车队参与的青年工程师盛会。SAE方程式(Formula SAE)系列赛源于1978年。第一次比赛于1979年在美国波斯顿举行,13支队伍中有11支完赛。当时的规则是制作一台5马力的木制赛车。SAE方程式(Formula SAE)系列赛将挑战本科生、研究生团队构思、设计与制造小型具有越野性能的方程式赛车的能力。为给车队最大的设计弹性和自我表达创意和想象力的空间,在整车设计方面将会限制很少。赛前车队通常用8至12个月组的时间设计、建造、测试和准备赛车。在与来自世界各地的大学代表队的比较中,赛事给了车队证明和展示其创造力和工程技术能力的机会。2009年中国国产汽车产销分别为1379.10万辆和1364.48万辆,首次成为世界汽车产销第一大国。汽车从中国人眼中的奢侈品到代步工具,到跃居世界汽车产销量第一的头把交椅,中国只用了短短十年时间。回顾十年来中国汽车工业的突飞猛进,一浪高过一浪的市场消费力,驱使中国一跃成为全球最大的汽车消费大国,而非真正意义上的汽车产业强国。中国汽车工业一直是在借鉴和应用,国外汽车一百多年来成熟的技术和制造工艺一路走来,而缺乏自主创新研发新技术的能力和人才培育。中国大学生方程式汽车大赛(以下简称FSAE)是中国汽车工程学会及其合作会员单位,在学习和总结美、日、德等国家相关经验的基础上,结合中国国情,精心打造的一项全新赛事。我国从2006年起开始组建FSAE车队。湖南大学、上海交通大学、厦门理工大学与同济大学自2007年至2009年共参加了在美国和日本举办的4场FSAE赛事,获得了多个单项奖及新秀奖。为搭建国内优秀汽车人才的选拔平台,培养和提高汽车专业学生的综合素质,2010年第一届中国FSAE由中国汽车工程学会、中国二十所大学汽车院系、国内领先的汽车传媒集团易车(BITAUTO)联合发起举办。中国FSAE秉持“中国创造擎动未来”的远大理想,立足于中国汽车工程教育和汽车产业的现实基础,吸收借鉴其他国家FSAE赛事的成功经验,打造一个新型的培养中国未来汽车产业领导者和工程师的交流盛会,并成为与国际青年汽车工程师交流的平台。中国FSAE致力于为国内优秀汽车人才的培养和选拔搭建公共平台,FSAE要求各参赛队按照赛事规则和赛车制造标准,自行设计和制造方程式类型的小型单人座休闲赛车,并携该车参加全部或部分赛事环节。比赛过程中,参赛队不仅要阐述设计理念,还要由评审裁判对该车进行若干项性能测试项目,通过全方位考核,提高学生们的设计、制造、成本控制、商业营销、沟通与协调等五方面的综合能力,全面提升汽车专业学生的综合素质,为中国汽车产业的发展进行长期的人才积蓄,促进中国汽车工业从“制造大国”向“产业强国”的战略方向迈进。1.2 FSAE方程式目的、依据和意义 汽车总布置设计是新车型开发的第一道工序,而新车型总体方案的确定是总布置设计的第一步。首先通过充分准备和综合分析,选择一个合理的整车方案,并经过一定的程序将其定下来。方案确定后,进行准确布置和计算,并为各总成下一步开展的工作打好基础、准备条件、提出要求并与各专业组协同完成全部的设计,共同实现整车的总目标。一种新车型的投产,除产品开发过程外,还要做大量的生产准备工作,如投入资金设备厂房、人员及制定一整套相关工艺等。这些都是为了保证整车能够稳定的大量的投入生产,并确保其整车性能和质量能被客户接受,所以整车总体方案和全部设计内容,也直接决定着工厂的投入。因此,总布置工作方案选择、布置、和计算,都是非常重要的,而且是不可缺少的。做好整车设计工作,必须做好以下两点:第一、要能准确地分析市场形势、了解客户的心理状态、车辆使用特点,熟悉工厂的生产条件,以便真正确定出合理的整车方案;第二、要有独立工作的能力。因为方案确定后,实现该方案的所有布置、计算及整车的开发工作,基本上是由一个人来完成,所以要求设计者工作不应该有任何失误,否则会造成反工和浪费,甚至失掉抢占市场的机会。因此要求设计者必须具有严谨、认真、细致、负责的精神,在整个开发过程中能协调和解决各方面问题和矛盾,使设计产品质量达到设计要求。总布置工作虽然以完成全部图纸及技术文件资料来标志着阶段性的结束,但还应该进行整车装配图的校核工作,即利用已完成的全部图纸或三维数模进行全面的细致的整车装置的图面及运动校核,及时发现问题、解决问题,使设计中存在的问题消除在试制和试装车之前。总布置设计在整车开发的过程中,占有非常重要的位置,必须认真做好这项工作。目前,中国汽车工业已处于大国地位,但还不是强国。从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。此次对大学生方程式赛车的总体布置进行设计,其目的主要有:一是重点培养学生的设计、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;二是通过设计交流创造学术竞争氛围,为师生之间、同学之间提供良好的交流平台,进而推动学科建设的提升;汽车总体布置设计是新车型开发的第一道工序,其在提高和检验汽车行业院校学生的综合素质,为汽车工业健康、快速和可持续发展积蓄人才,对增进产、学、研三方的交流与互动合作等方面具有十分广泛的意义。第2章 总布置设计准备及整车型式选择2.1 总布置设计的准备2.1.1 市场调研市场调研是制定商品规划的前提和基础,企业为了获取对外部环境的认识,需要设置专门机构,不断地进行认真、细致和规范的市场调查和预测。调研工作可以分为市场普查和专项调查。市场普查:可参与每年进行的市场情况调查,包括国内外制造厂家的产品开发生产销售国家政策地方规定、社会车辆运转情况统计、营运费用、管理维修、车辆性能、可靠性、寿命及备件供应等,从而掌握国内外市场情况、变化规律、发展趋势、用户的使用和需求状况,及时发现市场需求和预测未来。专项调查:参加为开发某车型而专门进行的市场调查,明确调查目标,细化调研提纲,对整车总成性能参数必须有初步的设想后,再对使用者和使用现场逐项进行的了解、找出差异,特别重点调研有关技术难点性能要求、结构处理、特殊用途或要求等。调研的方法主要是通过听问看和测试手段,达到预期目的,通过研究思考达到完善和创新,形成一个比较完整的方案。中国FSAE赛车总体设计要求:1赛车构造赛车必须是裸露式车轮和敞开式驾驶舱(方程式车型),以及四个车轮不能在一条直线上。 2车身 从车的前端到主防滚架或者防火墙的这段空间里,除了驾驶舱必须的开口,车体上不允许有其他的开口。允许在前悬架处有微小的开口。 3轴距 赛车必须有至少1525mm(60英寸)的轴距。轴距是指在车轮指向正前方时同一侧两车轮与地面的接触点之间的距离。 4轮距 赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。 5可视性 检查表格上所有的条目必须在不使用工具,比如内窥镜或是镜子的情况下清楚地呈现给技术检察官看。呈示时可以拆卸车身外板或提供可拆卸的可见套件。2.1.2 样车分析选同类型的样车,作为设计参数和设计的目标车型。第一届FSAE北京理工大学参赛赛车,如图2.1,2.2所示:图2.1 北京理工大学参赛赛车后视图图2.2 北京理工大学参赛赛车侧视图北京理工大学参赛赛车车身尺寸为:长2868mm、宽1450mm、高1048mm,轴距1650mm,前轮轮距为1250mm,后轮轮距为1200mm,车身小巧,最小转弯半径为3m。整备质量也为208kg,前后轴荷比被设计成46:54。10英寸KEIZER铝合金轮毂,与规格为18*6-10(R25B)的Hoosier方程式热熔胎相搭配。驾驶舱内装有萨波尔特(Sabelt)的五点式安全带。CF188自然吸气式发动机,排量为493cc,最大功率可达32kw,引擎最高转速可达7000rpm,极速为135km/h,百公里加速时间5.2s。前后悬结构采用的是双横臂式、四轮盘式制动、传动方式为链条传动、后驱动轮(该车为后轮驱动)设有对称锥齿轮式差速器,而与发动机相搭配的是一台CVT无级变速器。车身是由4130钢材焊接而成的,车架之间的焊接加工工艺采用的是二氧化碳保护焊,如图2.3所示。前后willwood caliper ps1双活塞卡钳,可在保证足够的制动力同时大幅减小制动总成质量。图2.3 车架2.1.3 制定设计目标RL7050H0赛车主要应用于FSAE比赛,对于各总成部件要求符合比赛规则。为了使RL7050H0赛车能够在赛事中取得优异的综合测评,要求其在动态项目中,赛车必须保持其机械性能完整性。能够顺利的完成加速性测试,8字绕环测试,高速避障测试,燃油消耗测试和耐久测试。并要将制造成本控制到最低。2.2 整车型式的选择根据设计要求,对整车型式进行方案分析,主要包括以下几个部分:(1)发动机的种类和型式(2)轴数和驱动型式(3)车头和驾驶室的型式及发动机与前轴的位置关系(4)轮胎的选择2.2.1 发动机的种类和布置型式驱动赛车的发动机必须为四冲程、排量610cc以下。第一年中国FSAE大赛,发动机统一采用赞助单位提供的发动机,可以在规则的限制范围内改造发动机。 CF188(500cc)四气门ATV专用发动机(如图2.4所示)是春风控股集团有限公司根据国内外ATV车生产厂家对大型ATV车专用发动机特有使用要求专门全新研发的四气门无极变速ATV专用发动机。既保持了春风发动机寿命长、动力强、声音轻、省油、环保等五大特点,又利用春风水冷机的特点解决了沙滩车大扭矩低车速长期工作情况下对发动机的冷却要求。单缸水冷四气门四冲程化油器发动机,具有前后轴传动输出,电和手拉两种起动方式,带发动机易起动减压功能,CVT自动无极变速,带下坡发动机制动,带停车变换的发动机体内一体化高档、低档、空档、停车档、倒档和档位显示,带车速里程输出,带汽车式易更换机油滤;还可以根据厂家需要选择配套4x4车、4独立悬架的前后桥和所有传动轴,可以电控方式方便的进行4x2、4x4、前桥差速锁死的变换,ECU点火器带危险工况的保护功能,还可以选装空滤器、散热器、风扇等。图2.4 CF188发动机外形尺寸图发动机:CF188(500CC)缸径行程:87.582最大功率:24kW/6500r/min点火方式:无触点、CDI直流点火外形尺寸(长x宽x高):610587.5519(mm)发动机形式:单缸、四冲程、水冷、四气门、顶置式凸轮轴、单平衡轴压缩比:10.2:1最低燃油消耗率(g/kw.h ):340润滑方式:压力飞溅润滑 启动方式:电起动/手拉起动2.2.2 驾驶室的型式驾驶室与发动机、前轴的布置位置,可组成不同的布置结构,形成不同的整车外型,对使用性能也有一定的影响。方案一:发动机前置前轮驱动(FF)这种布置型式为微型、普通级和中级轿车所广泛采用。与后轮驱动的乘用车相比较,前轮驱动乘用车的前桥轴荷大,有明显的不足转向性能;因为前轮是驱动轮,所以越过障碍的能力高;主减速器和变速器装在同一个壳体内,动力总成结构紧凑,且不需要在变速器与主减速器之间设置传动轴,车内地板凸包高度降低,有利提高乘坐舒适性;发动机布置在轴距外时,汽车的轴距可以缩短,因而有利于提高汽车的机动性;汽车的散热器布置在汽车前部,散热条件好,发动机可以得到足够的冷却;行李箱布置在汽车后部,固有足够大的行李箱空间;容易改装为客货两用车或救护车;供暖机构简单,且因管路短而供暖效率高;发动机、离合器、变速器与驾驶员位置近,所以操纵机构简单;发动机横置时能缩短汽车的总长,加上取消了传动轴等因素的影响,汽车消耗的材料明显减少,使整备质量减轻;发动机横置时,原主减速器的锥齿轮需要用圆柱齿轮取代,这又降低了制造难度,同时在装配和使用时也不必进行齿轮调整工作,此时,变速器和主减速器可以使用同一种润滑油。前轮驱动并转向需要采用等速万向节,其结构和制造工艺均复杂;前桥负荷较后轴重,并且前轮又是转向轮,故故前轮工作条件恶劣,轮胎寿命短;上坡行驶时因驱动轮上的附着力减小,汽车爬坡能力降低,特别是在爬越泥泞的坡路时,驱动轮容易打滑并使汽车丧失操纵稳定性;由于后轴负荷小而且制动时轴荷要前移,后轮容易抱死并引起汽车侧滑;当发动横置时受空间限制,总体布置工作困难,维修与保养时的接近性变差;一旦发生正面碰撞事故,因发动机及其附件损失较大,维修费用高。方案二::发动机前置后轮驱动(FR)汽车的传统布置形式,常为中高级及高级轿车所采用。轴荷分配合理,因而有利于提高轮胎的使用寿命;前轮不驱动,因而不需要采用等速万向节,这有利于减少制造成本;操纵机构简单;采暖机构简单,且管路供暖效率高;发动机冷却条件好;上坡行驶时,因驱动轮上的附着力增大,故爬坡能力强;改装为客货两用车或救护车比较容易;有足够大的行李箱空间;因变速器与主减速器分开,故拆装、维修容易;发动机的接近性良好。因为车身地板下方有传动轴,所以地板上有凸起的通道,并使后排座椅中部座垫的厚度减薄,影响乘坐舒适性;汽车正面与其他物体发生碰撞时,易导致发动机进入客厢,会使前排乘员受到严重伤害;汽车的总长、轴距均较长,整车整备质量增大,同时影响到汽车的燃油经济性和动力性。方案三:发动机后置后轮驱动(RR)这种布置在微型汽车和小型轿车上曾得到广泛使用,但现在轿车上已很少采用。动力总成布置成一体而使机构紧凑,因为发动机后置,汽车前部高度有条件降低,改善驾驶员视野;同时排气管不必从前部向后部延伸,加上可以省掉传动轴,故可向内地板凸包只需要有较低的高度用来容纳操纵机构的杆件和加强地板刚度即可,这就改善了后排座椅中间座位乘员出入的条件;整车整备质量小;乘客座椅能够布置在舒适区域;上坡行驶时,由于驱动轮上的附着力增加,爬坡能力提高;当发动机布置在轴距外时轴距短,汽车机动性能好。后轴负荷重,使汽车具有过多转向倾向,操纵性变坏;前轮附着力小,高速行驶时转向不稳定,影响操纵稳定性;行李箱在前部,受转向轮转向时要占据一定空间和改善驾驶视野的影响,行李箱体积不够大;因动力总成在后部,距驾驶员较远,所以操纵机构复杂;驾驶员发现发动机故障不如发动机前置容易;发动机后置不仅对发动机冷却和前风挡玻璃除霜带来不利,而且发动机工作噪声容易传给驾驶员,一旦汽车发生追尾事故,又会对后排乘员构成危险;受发动机高度影响,改装为客货两用车或救护车困难。方案四::发动机中置后轮驱动(MR)是大多数运动型轿车和方程式赛车所采用的型式。此外,某些大、中型客车也采用该型式,但采用该型式的货车很少。对于运动型车,可获得最佳的轴荷分配,操纵稳定性和行驶平顺性较好.发动机临近驱动桥,无需传动轴,从而减轻车重,具有较高的传动效率;重量集中,车身平摆方向的惯性力矩小,转弯时,转向盘操作灵敏,运动性好;对于大、中型客车具有车厢内的面积利用率较高、车内噪音小、传动轴短、传动效率高等优点。发动机的布置占据了车厢和行李箱的一部分空间,通常,车厢内只能安放2张座椅;对发动机的隔音和绝热效果差,乘坐舒适性有所降低;对于大、中型客车,发动机需要特殊设计,且其冷却和防尘不易;远程操纵机构复杂,维修保养不便.地板高度难于降低。因赛车的布置结构紧凑,选用此种布置发动机。2.2.3 轮胎的选型根据车辆类型、总质量、道路条件、车速及其他特殊要求,合理地选择轮胎。轮胎选择的好坏直接影响整车的使用性能,如动力性、经济性、通过性、安全性等。因此必须按使用要求、道路条件和国家标准进行合理的选择。一般在汽车满载时,轮胎所受的静负荷应等于小于它的额定负荷(约0.91.0)。这主要根据车辆的使用情况和道路条件而定,在条件比较好的情况下不超载、道路条件好,轮胎的静负荷可与额定负荷相等或相近,气压也可选高一点,这样会提高整车的经济性能。轮胎选择的另一个关键因素是车速。随着高速公路的发展和道路条件的改善,现代汽车的车速越来越高,对于轮胎来说,车速越高,轮胎的发热量也越大,致使轮胎的磨损和寿命都受到影响。轮胎的额定负荷能力是在一定车速下给定的,超过该车速长期使用合适轮胎的寿命急剧下降。另外,还要考虑的一个因素是超载。车辆超载或减载运行将对轮胎的负荷能力和使用寿命产生直线下降或上升的影响。所以要根据具体的使用条件道路、载荷、车速等因素来选择轮胎的规格、基本参数、气压和负荷能力,以保证整车的正常使用和性能的发挥。汽车常用的轮胎有普通斜交胎和普通子午线胎。普通斜交胎的胎体帘线层较多,胎侧厚,使用中不易刺破,侧向刚度大,但是缓冲性能差。而子午线胎的帘布层呈子午线排列,是帘布线的强度得到充分的利用,缓冲层也较多,加强了胎冠,所以提高了轮胎的缓冲性能、附着性能和使用寿命,滚动阻力比普通斜交胎要小,因而提高了整车的经济性。但是制造成本较高,由于胎侧较薄,侧向刚度小,太侧易被刺破。但是其优点较明显,相对斜交轮胎,子午线轮胎具备以下特点 : 良好的操纵稳定性能、安全的转弯性能 、良好的耐磨性能、生热少、滚动阻力低,节省燃油费用、牵引能力强,打滑少、高速行驶时的乘车舒适感好。2010中国FSAE攒足轮胎相关参数见表2.1,赛事规定赛车可装备如下两套轮胎: 表2. 1 2010中国FSAE赞助轮胎的相关参数规格180/530R13轮胎接地面宽(mminch)1857.3标准轮辋内距8.0轮胎半径(mm)244轮胎胎面宽(mminch)2238.8轮胎周长1626轮胎外径(mminch)53321.0轮辋内距7.5-8.5干胎在检查时安装在赛车上的轮胎定义为干胎。干胎尺寸任意,型号任意。他们可以是光头胎,也可是有纹的 雨胎雨胎可以是如下规定的任何型号和尺寸的有花纹和沟槽的样式:(1)花纹和沟槽的图案必须是由轮胎厂商塑造成型的,任何被刻制的花纹沟槽必须有文件证明它是符合比赛的相关规定的。 (2)沟槽最浅为2.4mm(3/32英寸)。2.2.4 转向机构型式的选择1齿轮齿条式转向器中小型轿车以及前轴轴荷小于1.2t的客车、货车,多采用该种型式,如图2.5所示。齿轮齿条式转向器的传动副为齿轮与齿条。转向轴带动小齿轮旋转时,齿条便做直线运动。有时,靠齿条来直接带动横拉杆,就可使转向轮转向。通常均布置在前轮轴线之后。转向传动副的主动件是一斜齿圆柱小齿轮,它和装在外壳中的从动件齿条相啮合,外壳固定在车身或车架上。齿条利用两个球接头直接和两根分开的左、右横拉杆相联。横拉杆再经球接头与梯形臂相接。齿轮齿条式转向器是依靠齿条背部靠近主动小齿轮处装置的可调节压力的弹簧来消除齿轮齿条传动副的齿间间隙的。为了转向轻便,主动小齿轮的直径应尽量小。通常,这类转向器的齿轮模数多在23mm范围内,压力角为20。,主动小齿轮有58个齿,螺旋角为915。根据小齿轮螺旋角和齿条倾斜角的大小和方向的不同,可以构成不同的传动方案。齿轮齿条式液压助力转向器,是相对于机械转向器而言的,其增加了转向油泵、转向油壶、转向油管、转向阀、转向油缸等部件,以期达到改善驾驶员手感,增加转向助力的目的的转向装置。齿轮齿条式转向器结构简单、紧凑;布置方便;制造容易,成本低廉;壳体采用铝合金或镁合金压铸而成,转向器的质量较小;转向灵敏,传动效率高达90%;齿轮与齿条间因磨损出现间隙以后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,能自动消除齿间间隙,能提高转向系统的刚度,防治工作时产生冲击和噪声;占用体积小,便于布置,制造容易。但转向传动比较小,(一般不大于15),且齿条沿其长度方向磨损不均匀;逆效率高(60% 70%),不易控制。2循环球式转向器当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用,如图2.6所示。由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。循环球式转向器又有两种结构型式,即常见的循环球一齿条齿扇式,和另一种即循环球一曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及螺母上的齿条与摇臂轴上的齿扇传动副;后者为:螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴上的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。循环球式转向器的传动效率高、工作平稳、可靠,操纵起来比较轻便舒适,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、机械部件的磨损较小,使用寿命相对较长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。但逆效率高,结构复杂,制造困难,制造精度要求高。 图2.5 齿轮齿条式转向器 图2.6 循环球式转向器3蜗杆曲柄销式转向器它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上,如图2.7所示。转向器的传动比可以做成不变的或者变化的;指销和蜗杆之间的工作面磨损后,调整间隙工作容易。固定指销式磨损快、工作效率低。旋转指销式结构复杂。双指销式结构复杂、尺寸和质量大,并且对两主销间的位置精度、螺杆上的形状及尺寸精度等要求较高。传动比的变化特性和传动间隙特性的变化受限制。应用很少。4球面蜗杆滚轮式转向器曾广泛应用在轻型和中型汽车上,如图2.8所示。如前轴轴荷不大于2.5t且无动力转向和不大于4t带动力转向的汽车。这种转向器的传动副是球面蜗杆及滚轮。滚轮用滚动轴承支承在摇臂轴上,又有双齿滚轮和三齿滚轮之分。球面蜗杆上的螺旋齿是在凹圆弧线绕一轴线旋转而成的表面上切削而成的,因此又称为圆弧面蜗杆,其承载能力比通常齿顶在同一圆柱表面上的圆柱蜗杆大1.52倍。这可由球面蜗杆同时有更多的齿进人啮合和啮合时接触较好来解释。球面蜗杆也可使摇臂轴有更大的转角。采用双齿滚轮时摇臂轴转角可达80。左右,采用三齿滚轮时可达100。由于其传动副以滚动摩擦代替了滑动摩擦,使摩擦损失减小,传动效率+可达0.770.82,而逆效率-则较低,约为0.6。其磨损小,工作可靠,使用寿命长。可利用轴向移动摇臂轴以改变滚轮与蜗杆中心距的方法来调整传动间隙。正效率低;工作齿面磨损以后,调整啮合间隙比较困难,转向器的传动比不能变化。 图2.7 蜗杆曲柄销式转向器 图2.8 球面蜗杆滚轮式转向器2.2.5 制动器型式的选择鼓式制动器的各种结构形式如图2.9af所示。不同形式的鼓式制动器的主要区别有:蹄片固定支点的数量和位置不同;张开装置的形势与数量不同;制动时两块蹄片之间有无相互作用。制动力大小的比较:按照制动力由大到小排列为双向增力式、单向增力式、双向双领蹄式、单向双领蹄式、领从蹄式、双从蹄式。制动稳定性的比较:按照制动稳定性由大到小排列为双从蹄式、领从蹄式、单向双领蹄式、双向双领蹄式、单向增力式、双向增力式。盘式制动器分为全盘式(如图2.10所示)和钳盘式两种,钳盘式又分为浮动钳盘式(如图2.11所示)和固定钳盘式(如图2.12所示)。钳盘式制动器制动钳的布置可以在车轴之前或之后。制动钳位于轴前可避免轮胎向钳内甩溅泥水污物;位于轴后则可减小制动时轮毂轴承径向合力。盘式制动器尤其是浮动钳式盘式制动器已十分广泛地用于轿车的前轮。与鼓式后轮制动器配合,也可使后轮制动器较容易地附加驻车制动的驱动机构,兼作驻车制动器之用。有些高性能轿车的前、后轮都采用盘式制动器,主要是为了保持制动力分配系数的稳定。(f)(d)(e)(c)(b)(a)QQQQccaaaaaceeeeeePRRRRN1N1N1N1N1N1N1N1N1N1N1N1PPPPPPPP2P1图2.9 鼓式制动器简图(a)领从蹄式(用凸轮张开) (b)领从蹄式用制动轮缸张开)(c)领从蹄式(非双向,平衡式)(d)双向领从蹄式 (e)单向增力式 (f)双向增力式盘式制动器也开始用于某些不同等级的客车和载货汽车上。有些重型载货汽车采用多片全盘式制动器以获得大的制动力矩,但制动盘的冷却条件差,温升较大。AAA-A图2.10 多片全盘式制动器结构图P1P1(a)滑动前盘式 (b)摆动钳盘式 图2.11 浮动钳盘式制动机器工作原理图 图2.12 固定钳盘式制动器结构图与鼓式制动器比较,盘式制动器有如下优点:(1)热稳定性较好。这是因为制动盘对摩擦衬块无摩擦增力作用,还因为制动摩擦衬块的尺寸不长,其工作表面的面积仅为制动盘而积的121 6故散热比较好。(2)水稳定性较好。因为制动衬块刘。盘的单位压力高,易将水挤出,同时在离心力的作用下沾水后也易于甩掉,再加上衬块对盘的擦拭作用,因而,出水后只需经一、二次制动即能恢复正常;而鼓式制动器则需经过甚至十余次制动方能恢复正常制动效能。(3)制动稳定性好。盘式制动器的制动力矩与制动油缸的活塞推力及摩擦系数成线性关系,再加上无自行增势作用,因此在制动过程中制动力矩增长较和缓,与鼓式制动器相比,能保证高的制动稳定性。(4)制动力矩与汽车前进和后退行驶无关。(5)在输出同样大小制动力矩的条件下,盘式制动器的质量和尺寸比鼓式的要小。(6)盘式的摩擦衬块比鼓式的摩擦衬片在磨损后更易更换,结构也较简单,维修保养容易。(7)制动盘与摩擦衬块间的间隙小(0.050.15mm),这就缩短了油缸活塞的操作时间,并使制动驱动机构的力传动比有增大的可能。(8)制动盘的热膨胀不会像制动鼓热膨胀那样引起制动踏板行程损失,这也使间隙自动调整装置的设计可以简化。(9)易于构成多回路制动驱动系统,使系统有较好的可靠性和安全性以保证汽车在任何车速下各车轮都能均匀一致地平稳制动。(10)能方便地实现制动器磨损报警,以便及时更换摩擦衬块。盘式制动器的主要缺点是:(1)难以完全防止尘污和锈蚀(但封闭的多片全盘式制动器除外)。(2)兼作驻车制动器时,所需附加的驻车制动驱动机构较复杂,因此有的汽车采用前轮为盘式后轮为鼓式的制动系统。(3)由于无自行增势作用,制动效能较低,中型轿车采用时即需加力装置。2.2.6 悬架布置形式汽车悬架包括弹性元件,减振器和传力装置等三部分,这三部分分别起缓冲,减振和力的传递作用。从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,结构简单,无需润滑的优点,但由于本身没有摩擦而没有减振作用。减振器指液力减振器或压缩空气减振器,是为了加速衰减车身的振动,它是悬架机构中最精密和复杂的机械件。传力装置是指车架的上下摆臂等叉形刚架、转向节等元件,用来传递纵向力,侧向力及力矩,并保证车轮相对于车架(或车身)有确定的相对运动规律。汽车悬架的形式分为非独立悬架和独立悬架两种:方案一: 非独立悬架非独立悬挂架的左右车轮装在一根整体的刚性周或非断开时驱动桥的桥壳上。结构简单,制造、维护方便,经济性好;工作可靠,使用寿命长;车轮跳动时,轮距、前柬不变,因而轮胎磨损小;转向时,车身侧倾后车轮的外倾角不变,传递侧向力的能力不降低;侧倾中心位置较高,有利于减小转向时车身的侧倾角。由于车桥与车轮一起跳动,因而需要较大的空间,影响发动机或行李箱的布置。用于轿车或载货汽车的前悬架时,一般需要抬高发动机或是将车桥(轴)做成中间下凹的形状以利发动机布置,这将增加制造成本;用于轿车后悬架时,会导致行李箱容积减小,备胎的布置也不方便;用于驱动桥时,会使得非悬挂质量较大,不利于汽车的行驶平顺性及轮胎的接地性能;当两侧车轮跳动高度不一致时(例如左右车轮驶过的凸起高度不同),整根车桥会倾斜,使左右车轮直接相互影响;在不平路面直线行驶时,由于左右车轮跳动不一致而导致的轴转向会降低直线行驶的稳定性;用于驱动桥时,驱动桥的输入转矩会引起左右车轮负荷转移。如图2.13所示为导向杆系非独立悬架应用于轿车后驱动桥。方案二::独立悬架与非独立悬架相比,独立悬架具有如下优点:非悬挂质量小,悬架所受到并传给车身的冲击载荷小,有利于提高汽车的行驶平顺性及轮胎的接地性能;左右车轮的跳动没有直接的相互影响,可减少车身的倾斜和振动;占用横向空间少,便于发动机布置,可以降低发动机的安装位置,从而降低汽车质心位置,有利于提高汽车的行驶稳定性;易于实现驱动轮转向。图2.13 导向杆系非独立悬架1双横臂式独立悬架(如图2.14所示)按其上、下横臂的长短又可分为等长双横臂式和不等长双横臂式两种。等长双横臂式悬架在其车轮作上、下跳动时,可保持主销倾角不变,但轮距却有较大的变化,会使轮胎磨损严重,故已很少采用,多为不等长双横臂式悬架所取代。后一种型式的悬架在其车轮上、下跳动时,只要适当地选择上、下横臂的长度并合理布置,即可使轮距及车轮定位参数的变化量限定在允许范围内。这种不大的轮距改变,不应引起车轮沿路面的侧滑,而为轮胎的弹性变形所补偿。因此,不等长双横臂式独立悬架能保证汽车有良好的行驶稳定性,已为中、高级轿车的前悬架所广泛采用,也适用于跑车和赛车的驱动桥。突出优点在于设计的灵活性,可以通过合理选择空间导向杆系的铰接点的位置及导向臂(或称为控制臂)的长度,使得悬架具有合适的运动特性(亦即当车轮跳动或车身侧倾时,车轮定位角及轮距的变化能尽量满足设计的要求),并且形成恰当的侧倾中心和纵倾中心。垂直方向尺寸小,车轮接地性能好。结构较复杂,占用空间较多,铰接点多,制动似的点头效应会引起弹簧倾斜。2麦弗逊式独立悬架(如图2.15所示)可将导向机构及减振装置集合到一起,将多个零件集成在一个单元里。这样一来,相对双横臂悬架而言,它不仅简化了结构,减小了质量,还节省了空间,降低了制造成本,并且几乎不占用横向空间,有利于车身前部地板的构造和发动机布置,这一点在用于紧凑型轿车(例如微型轿车,它们几乎全部采用前置前驱动方式)的前悬架时,具有无可比拟的优势。麦克弗逊悬架的另外一些优点包括:铰接点的数目较少;上下铰点之间有较大的距离,下铰点与车轮接地点之间距离较小,这对减少铰点处的受力有利;弹簧行程较大。另外,当车轮跳动时,其轮距、前束及车轮外倾角等均改变不大,减轻了轮胎的磨损,也使汽车具有良好的行驶稳定性。 图2.14 双横臂式独立悬架 图2.15 麦弗逊式独立悬架由于自由度减少,悬架运动特性的可设计性不如双横臂悬架;振动通过上支承点传递给汽车头部,需采取相应措施隔离振动、噪声;减振器的活塞杆与导向套之间存在摩擦力,使得悬架的动刚度增加,弹性特性变差,小位移时这一影响更加显著;对轮胎的不平衡较敏感;减振器紧贴车轮布置,其间空间很小,有些情况下不便于采用宽胎或加装防滑链。2.2.7 差速器型式的选择方案一:对称式圆锥行星齿轮差速器最广泛地用在轿车、客车和各种公路用载货汽车上,如图2.16所示。普通的对称式圆锥行星齿轮差速器由差速器左、右壳,2个半轴齿轮,4个行星齿轮(少数汽车采用3个行星齿轮,小型、微型汽车多采用2个行星齿轮),行星齿轮轴(不少装4个行星齿轮的差速器采用十字轴结构),半轴齿轮及行星齿轮垫片等组成。结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等。当汽车在坏路上行驶时,严重影响通过能力。如当汽车的一个驱动轮陷入泥泞路面时,虽然另一驱动轮在良好路面上,汽车却往往不能前进(俗称打滑)。此时在泥泞路面上的驱动轮原地滑转,在良好路面上的车轮却静止不动。这是因为在泥泞路面上的车轮与路面之间的附着力较小,路面只能通过此轮对半轴作用较小的反作用力矩,因此差速器分配给此轮的转矩也较小,尽管另一驱动轮与良好路面间的附着力较大,但因平均分配转矩的特点,使这一驱动轮也只能分到与滑转驱动轮等量的转矩,以致驱动力不足以克服行驶阻力,汽车不能前进,而动力则消耗在滑转驱动轮上。此时加大油门不仅不能使汽车前进,反而浪费燃油,加速机件磨损,尤其使轮胎磨损加剧。方案二:强制锁止式防滑差速器(如图2.17所示)当一侧驱动轮在坏路上滑转时,能使大部分甚至全部转矩传给在良好路面上的驱动轮,以充分利用这一驱动轮的附着力来产生足够的驱动力,使汽车顺利起步或继续行驶。 图2.16 普通圆锥齿轮 图2.17 啮合套式强制锁止差速器 差速器的工作原理简图左、右驱动车轮可以传递由附着力决定的全部转矩。当汽车因某一驱动车轮滑转而停车时,已经失去原有的冲力,再起步时需要克服比行驶时大得多的阻力,因而驱动车轮需要发挥更大的牵引力,而这时由于滑转而遭到破坏的地表而往往不能承受这样大的牵引力。除非另一驱动车轮附着良好,否则,当左右车轮都处在附着系数比较小的路面上,则虽锁住差速器,牵引力仍然会超过车轮与路面的附着力,汽车仍无法起步和前进。因此在一般表面状况变化不大的路面上,即使锁住差速器,汽车总牵引力的增加往往不超过25。另外,当汽车驶入较好的路面时,差速器的锁止机构应即时松开否则将产生与无差速器时一样的问题,例如使转弯困难、轮胎加速磨损、使传动系零件过载和消耗过多的功率等。方案三:Torson 差速器托森差速器主要由蜗杆行星齿轮,差速器壳体,前输出轴和后输出轴四套大部件组成,如图2.18所示。发动机输出的动力直接用来驱动托森差速器的壳体,壳体的转动会带动三组蜗杆行星齿轮转动,行星齿轮与壳体之间是由直齿连接的,与前后输出轴之间是由蜗杆连接的。这样动力可以顺利的通过行星齿轮分配给前后输出轴从而能够驱动前后车桥。正是因为行星齿轮的蜗杆设计,让它具备了一个自锁死功能。一旦某一车轮遇到较大阻力时,托森差速器会向这个车轮传输更大的动力。Torsen差速器是恒时4驱,牵引力被分配到了每个车轮,于是就有了良好的弯道、直线(干/湿)驾驶性能。Torsen自锁中心差速器确保了前后轮均一的动力分配。任何速度的不同,如前轮遇到冰面时,系统会快速做出反应,75%的扭矩会转向转速慢的车轮,在这里也就是后轮。 Torsen差速器实现了恒时、连续扭矩控制管理,它持续工作,没有时间上的延迟,但不介入总扭矩输出的调整,也就不存在着扭矩的损失,与牵引力控制和车身稳定控制系统相比具有更大的优越性。因为没有传统的自锁差速器所配备的多片式离合器,也就不存在着磨损,并实现了免维护。纯机械LSD具有良好的可靠性。 BB图2.18 Torsen差速器Torsen差速器可以与任何变速器、分动器实现匹配,与车辆其它安全控制系统ABS、TCS(Traction Control Systems,牵引力控制)、SCS(Stability Control Systems),车身稳定控制)相容。Torsen差速器是纯机械结构,在车轮刚一打滑的瞬间就会发生作用,它具有线性锁止特性,是真正的恒时四驱,在平时正常行驶时扭矩前后分配是5050。但是造价高,所以一般托森差速器都用在高档车上;重量太大,装上它后对车辆的加速性是一份拖累。2.3 本章小结本章主要介绍了总体布置的方法和原则,通过市场调研制定初步方案,再通过样车分析得到相关数据,最后制定总体布置的设计目标,明确设计要求。根据设计原则和目标,提出被开发车型的整车型式方案,包括发动机的种类和型式、轴数和驱动形式、驾驶室的型式、轮胎的选择,确定基本的部件。第3章 新车型主要目标参数的初步确定3.1 几个主要“目标参数”的确定2010年第一届中国FSAE大赛中,部分车队赛参数:北京理工大学参赛赛车,最高车速可达135km/h,整车整备质量 208Kg;哈尔滨工业大学参赛赛车,最高车速可达160km/h,整车整备质量 265Kg。根据以上参数初步选定RL7050H0最高车速为140km/h,整车整备质量210Kg。3.2 发动机最大功率及其转速 (3.1)式中,发动机最大功率kw;传动系效率,取95%;汽车总质量,整车整备质量与承载质量之和,=285kg;重力加速度,g/s2;f滚动阻力数,良好的沥青或混泥土路面滚动阻力系数为0.0100.018,此处取0.015;空气阻力系数 0.35;A迎风面积,取0.7(前轮距总高);最高车速,140km/h。根据公式(3.1)可得: =11.011kw通过上述方法计算得出结论:RL7050H0赛车对发动机的最大功率要求是不得低于11.011kw。3.3 发动机最大扭矩及其转速当发动机最大功率和其相应转速确定后,可用下式确定发动机的最大转矩。 (3.2)式中,发动机最大转矩,Nm;扭矩适应性系数,即=Memax/Mp;最大功率点扭矩Nm;最大功率点转速。一般汽油机=1.21.35,柴油机=1.11.25;值的大小标志着行驶阻力增加时,发动机沿外特性曲线自动增加扭矩能力。的值大小可参考同类样机的数值进行选取。发动机最大扭矩点的转速应该认真选取,一般希望该转速于最大功率点的转速有一定比例关系,即保证在1.42.0之间,如果取得过高,会使的比值变小,若小于1.4,会使直接档的稳定车速偏高,造成在市区内行驶转弯等情况下增加换挡次数,故希望不要太高。根据选定的发动机CF188的具体参数和公式(4.2)可得: =38.745 Nm3.4 传动系速比的选择根据CF188发动机在规定条件下可根据主轴和从动轮的转速确定传动系的变速比,规定条件如表3.1所示,变速比关系如表3.2所示:表3.1 CF188测试条件离合器型号CF188结合转速(rpm)1950滚珠重量(g)25.1产品来源装配轴环长度(mm)90.8中心距(mm)215测试日期2008-5-25表3.2 CF188传动系变速比主轴 RPM从动轮RPM变速比 主轴 RPM从动轮RPM变速比 主轴 RPM从动轮RPM变速比 390136.12.872150.7748.52.87390445000.87585203.52.872346.1817.62.874097.850500.81780.3271.52.872541.3901.62.824298.35632.40.76976.5340.52.872737.110552.594495.36158.50.731171.9408.92.872932.21303.12.254704.76626.30.711367.6476.82.873126.31931.71.624902.469300.711563.1545.22.873320.528001.195089.67188.70.711759.5612.82.873516.23358.41.055301.77428.30.711955681.42.873710.139800.93根据表3.1和表3.2得出后传动轮转速曲线,如图3.1所示。75007000550050004000后从动轮转速rpm390585780.3976.511721368156317601955215123462541273729323126332135163710390440984298449547054902509053026500600045003500250020001000500 030001500主轴转速rpm图3.1 后传动轮转速曲线图3.4.1 最小传动比的选择整车传动系统最小传动比的选择,可根据最高车速及其功率平衡图来确定。普通的汽车没有分动器或副变速器,而变速器的最小传动比常为1,所以传动系的最小传动比就是。若变速器的最高档不是直接档,或为超速档,则最小传动比应为变速器最高档传动比为主减速器传动比的乘积,即: (3.3)选取主减速比为3.0,根据CF188动力总成参数和公式(3.3)可得: =2.133.4.2 最大传动比的选择最大传动比为变速器头档速比与主减速器速比的乘积,若主减速比确定,则在确定变速器头档速比即可。该速比主要是用来爬坡与道路条件很差的情况汽车仍能行驶。此时变速器最大速比为:(3.4)式中,最大爬坡角度;车轮滚动半径,m。(3.5)由上式得 =0.2587m=2.23求出以后,验算附着条件,牵引力不应大于附着力即(3.6)式中,最大牵引力,N;附着力,N;驱动桥质量,Kg;附着系数,=0.7。所以:3.093经上述计算可得出,变速器的最大传动比2.87符合使用条件。3.4.3 变速器档位数的选择变速器档位数的多少,要根据汽车的类型,使用条件和性能要求及最高档和最低档的速比范围大小而定。在最大传动比与最小传动比值越大,则档位数应增多。档位数越多,发动机的功率利用率越高,(高功率区工作时间长),即增加了动力性,同时也增加了发动机在低油耗区工作的可能性,提高了燃油经济性。RL7050H0赛车所采用的变速器是与发动机相搭配的是一台CVT无级变速器。其优点在于:能实现速比无级调节;提高燃油经济性和动力性,加速性能和燃油经济性有很大提高,平顺性更好;降低有害物质的排放;实现汽车动力传动系统的综合控制;结构简单,成本低,可靠性高。3.5 本章小结明确了新车型的主要用途、使用条件和一些特殊要求,在整车的方案初步确定后,经过计算和选择,初步确定了最高车速、最大爬坡度、各总成质量、整车整备质量、总重、发动机的最大功率、最大扭矩及其对应的转速以及变速器的速比和档位数。第4章 尺寸参数与质量参数的初步确定4.1 轿车的级别与载荷确定RL7050H0赛车发动机排量为0.5L,整车整备质量为210kg。表4.1所示为中国、大众汽车、福特汽车对轿车的分级表。根据此表可定义RL7050H0赛车级别为微型。表4.1 轿车的分级表VWA 00A0ABCDFORDABCDEF中国微型小型次中级中级中高级高级发动机排量(L)小于 1.01.01.31.31.61.62.02.02.52.5 以上轴距(m)2.002.202.202.302.302.452.452.602.602.802.80以上总长(m)3.303.703.704.004.004.204.204.454.454.804.80以上自重(kg)小于6806808008009709701150115013801380以上4.2 轿车主要参数的确定根据2010年第一届中国FSAE大赛对整车技术规范初步确定RL7050H0赛车的主要参数。4.2.1 驾驶员单元1在本文中涉及的名词定义在其他要求之下,赛车的结构必须包括两个带有支撑的防滚架,有支撑系统的前隔板,缓冲结构和侧边防撞机构。主环:位于车手旁边或是身后的一个防滚架。前环:位于车手双腿之上,接近方向盘的防滚架。防滚架: 前环和主环统称为“防滚架”。车架单元:最小的不可切割的,连续的单元。车架:“车架”是被设计用来支撑所有赛车的功能系统的结构部件,该部件可能是单个焊接结构,也可是复杂的焊接结构或是复合结构与焊接结构的组合。缓冲结构:个位于前隔板前的可变形的吸能装置。2主环和前环的总体要求(1)车手的头和手在任何翻车的状态下都不能与地面接触。(2)车架必须包括在图中显示的一个主环和一个前环。(3)当车手正常乘坐并且在车手约束系统的约束下,一个第95百分位男性和该车队所有车手的头盔:必须与前环顶端和主环顶端的连线有至少50.8毫米(2英寸)的距离(图4.1); 如果主环支撑置后,头盔必须与主环顶部和主环支架底端末尾连线至少有50.8毫米的间距(图4.2);如果主环支撑置前,头盔不能超过主环后表面(图4.3)。至所有车手和第95百分位男性模板最少50mm(2英寸)图4.1 头部距上端安全距离至所有车手和第95百分位男性模板至少50mm(2英寸)图4.2 头部距后端安全距离仅使用向前主环支撑时头盔不可向后超越这条线图4.3 头盔和主环的关系主环必须由两个在主环两侧并且向前或向后延伸的支架支撑。从侧视图看,主环和主环支架禁止倒向通过主环顶端垂线的同侧。也就是说,若主环向前倾,支架必须在主环之前。同样的,若主环向后倾斜,支架必须在主环后部。主环支架和主环接触点必须与主环顶越近越好,并且与主环最高面距离不超过160毫米(6.3 英寸)。主环和主环支架所构成的角度至少为30度,如图4.4所示。前防滚架不可低于方向盘的顶端支撑上端离前环顶端距离不超过50mm(2英寸)前防滚架及其支撑必须统一并入车架和环绕结构中最小30度最小30度支撑上端距离主环顶端不超过16cm(6.3英寸)主防滚架的前后支撑在左右两边。到防滚架的角度最少为30度。图4.4 前环和主环间位置关系3第95百分位男性尺寸模板(见图4.5)一份用来代表第95百分位男性的二维模板尺寸如下:用直径为200毫米(7.87英寸)的圆代表髋部和臀部;用直径为200毫米(7.87英寸)的圆代表肩膀及颈部区域;用直径为300毫米(11.81英寸)的圆代表头部(包含头盔);用一条长为490毫米(19.29英寸)的直线连接两个直径为200毫米圆的圆心;用一条280毫米(11.02英寸)的直线连接位于上方的直径为200毫米和300毫米的头部圆的圆心。4第95百分位男性模板将如下放置(见图4.5):将座椅调整到最后位置;将部直径为200毫米的圆将被放到椅背与座椅底部的连接处,并且与两者相切;将中部直径为200毫米代表肩部的圆,放到椅背上;将最上部的直径为300毫米的圆放置在距离车手头部约束不超过25.4毫米(1 英寸)的地方,也就是通常情况下车手头盔所处的位置。圆A=带有头盔的头部直径300圆B=肩膀直径200圆C=臀部直径200直线A-B=从圆心到圆心280mm直线A-B=从圆心到圆心490mm81o125o9001200125o350700ABC图4.5 人体模型简图4.2.2 整车外形尺寸的确定1整车长度尺寸的确定根据第95百分位男性人体主要尺寸及赛车等级可初步确定整车长度为3000mm。为了保证驾驶员脚部的操作空间的合理性及驾驶员操作灵活性和减少疲劳,油门踏板位置位于距H点(即图5-5中c点)约880mm的位置,离合器踏板位于油门踏板的左侧100mm处,制动踏板位于油门踏板的右侧120mm处。此种布置方式使人在有限的操作空间内更便于操作,同时与车架四周的空间容合性比较合理。适当布置制动系统的位置和缓冲系统初步前悬长度为740mm。合理放置发动机及传动系统初步确定后悬长度为480mm。2整车高度尺寸的确定根据FSAE大赛规定选取合理的人体模型即合理的百分位:男子95%(1800mm)。车内高度参照SAE的要求:确定人体的舒适坐姿;按眼椭圆要求进行室内布置;按国标GB11562(汽车驾驶员前方视野要求及测量方法)校核视野;确定头部空间;室内高度空间的几个主要参数:H61-从前R点到头部包络线;H37-从前头部包络线到车顶内表面;H63-从后R点到头部包络线;H38-从头部包络线到顶棚。初步选定整车高度为1497mm。4.3 本章小结根据国标和SAE的相关要求,确定轿车的级别和载荷,确定整车的长度与高度尺寸。第5章 各总成的匹配及总布置图绘制5.1 各相关总成的匹配5.1.1 车身总布置设计先布置发动机、散热装置,再布置前后车轮,正确处理相互之间的位置关系,需遵循以下原则:(1)车头高度应尽量低,特别是前端低,可以增加视野;(2)车头与驾驶室的翻转及发动机的拆装和接近性;(3)通风与散热要好;(4)调整好前轮跳动与翼子板的间隙。5.1.2 发动机总布置设计对于发动机总成的外形及附件的布置,首先应保证工作可靠,布置合理,并能满足整车布置的需要和整车性能的发挥,需遵循以下原则:(1)各附件的选择应保证可靠,整机布置合理,并能适合整车布置的需要,维修保养方便;(2)应保证发动机振动最小;(3)发动机进、排气歧管的布置,应尽量保证进、排气口的连管的方便性和通畅性;(4)保证驾驶室内有舒适的环境,足够的空间。发动机的上下位置:用发动机的气缸体前端面与曲轴中心线交点到地面的高度尺寸表明发动机的高度,其值为327.5mm发动机的前后位置:发动机曲轴中心距前轴中心线距离为1377.3mm,发动机曲轴中心距后轴中心线距离为562.7mm。发动机的左右位置:因采用的变速器是与CF188发动机相匹配的CVT无级变速器,且其重心位置位于曲轴中心和传动轴中心线的交点,故将变速器的传动轴中心线布置与汽车中心线相一致。这对底盘承载系统的受力和发动机悬置支架的统一有利。5.1.3 转向节、车轮总成与前制动器总成的布置设计将转向器布置在前轴后方,充分考虑到了人机工程的需要及车内总体空间布局的要求。遵循以下布置原则:(1)保证主销中心(等速万向节中心)到车轮中心距离最小;(2)选取合适的主销内倾角;(3)转向横拉杆与节下臂连接环头拆装的方便性;(4)前轮最大转角极限位置。5.2 整车总布置图绘制5.2.1 整车布置的基准线选择车架上平面线、前轮中心线、汽车中心线、地面线、前轮铅垂线作为基准线,如图5.1所示,其定义如下:1车架上平面线:车架纵梁较长的一段上平面在汽车侧视图和前视图上的投影线定义为车价上平面线。它是作为标注汽车各垂向尺寸的基准线或零线。而对于具有从承载式车身的汽车,则以车身中部底板下表面或中部边梁的下翼面在侧视图或前视图上的投影线作为标注垂向尺寸的基准线或零线。2前轮中心线:通过左右前轮的中心并垂直于车架上平面线的平面在汽车侧视图和俯视图上的投影线定义为前轮中心线。它是标注汽车各纵向尺寸的基准线或零线。前轮中心线车架上平面线后轮铅垂线汽车中心线前轴中心线汽车中心线aFr01AaFBrr2OOOab3汽车中心线:汽车纵向垂直对称平面在俯视图和前视图上的投影线定义为汽车的中心线。它是标注汽车各向尺寸的基准线。Br02BAA”后轴中心线地面线前轮铅垂线O图5.1 基准线示意图4地面线:地平面在汽车侧视图和前视图上的投影线定义为地面线。它是标注汽车高度、货台高度、离地间隙、接近角和离去角等尺寸的基准线。5前轮铅垂线:通过左右前轮的中心并垂直于地面的平面在侧视图上的投影线定义为前轮铅垂线。它是标注汽车轴距和前悬的基准线。5.2.2 总布置图绘制的基本原则总布置图绘制规范以国内颁布的法规为主,在国内法规没有做出具体说明的部分参照国内相关法规与国外 SAE、ECE、DIN。初步说明如下:1主图板:QC/T 49020002轿车尺寸标注编码:QC/T 57619993眼椭圆:GB/T 1786719994安全带固定点:GB 1416719935A、B 区:GB 115561994;GB 1156519896前方视野:GB 1156219947脚踏板:GB/T 1305319918头部空间、上下车方便性:SAE J 11005.3 本章小结在整车方案和主要技术参数初步确定后,为了能将新车型的使用要求和使用性能发挥到最好,设定相关要求,对车身、发动机、车轮总成及转向节、制动器进行了整体布置。通过参考国内外同类车型,完成了对整车基准线的选择和绘制总布置图的基本原则的确定,为后续设计提供了理论基础。第6章 主要总成的布置及其硬点概述6.1 各总成的布置6.1.1 发动机及传动系的布置布置原则:1油底壳、机油滤清器与副车架的最小跳动距离;2传动轴与副车架及前横梁的间隙;3热器与发动机的间隙,风扇中心与散热器芯部中心可以对齐,或者高于芯部中心;4曲轴中心线与零线布置前高后底(夹角约25),一般取 3左右。目的是能使汽车在满载状态时,传动系统的轴线互相之间夹角最小,甚至从前至后称为一条直线,以提高万向节的传动效率和减少磨损;5满载时传动轴的正常夹角在4以下最好,不超过8。6单根传动轴不易过长,必要时可加中间支撑,变成两根或多根传动轴传动。轿车传动轴的布置,在不影响离地间隙的情况下,主要考虑车身地板的传动轴鼓包越小越好,因此传动线可布置成中间低两头高的形式。其布置形式为中置后驱动(横置);与发动机匹配应尽量保证振动噪声最低;维修最方便;传动系统进行动力性经济性优化。(1)传动轴夹角:水平面(俯视图)内接近零在-0.5+0.5之间最好,上下公差最大不能超过2度,满载工况轿车前视图向上为正01度,半载(轿车载3人)为-1+0度之间,货车可以大一些一般在-2+2之间最好,小型轿车由于传动轴短可以比大轿车适当方大,一般可分别在0+2度和-20之间。(2)发动机和附件与其他和各自之间布置间隙:静止件之间布置间隙1015mm;运动件或有热量件与其他件之间动间隙1525mm;经常修理部件间隙应25mm一般在 2550mm;排气管与其他所有零件间隙应大于30mm,一般3060mm排气管与油箱与油管之间间隙应大于60mm,一般为6090mm,而且要装防热辐射反射板。(3)建模精度:发动机悬置按装孔位硬点位置度建模精度误差为-0.5+0.5mm;发动机结构外形的建模误差为在-2+2mm 之间,发动机机舱附件建模精度误差为-1+1mm,附件安装孔位位置度硬点建模精度误差为-0.25+0.25,,按装支架和车身支承孔位硬点位置度建模精度误差为-0.25+0.25;零部件安装螺栓与孔位之间要设计 2mm间隙(如M10螺栓用直径12的孔),以便补偿制造和装配误差。6.1.2 驾驶室及悬架的布置1驾驶区布置及要求因前轮罩,为保证离合器踏板中心至最近障碍物(车轮)的距离符合标准要求,需进行仔细的布置,以便获得好的舒适性。依据SAE标准或GB标准进行布置,并要满足人机工程标准和要求。2驾驶区尺寸布置及建模要求(1)一般制动踏板面高出油门踏板3060mm,以便安全,制动踏板与油门踏板在Y 轴方向(侧向)两踏板边界间距为2080mm(小车小大车大);(2)离合器踏板离制动踏板距离为3060mm,理想的中心距为180220mm;(3)制动踏板和离合器踏板宽一般大于油门踏板宽的2倍,离合器和制动器踏板上平面基本在一个平面上。3仪表板总布置设计仪表板部分:在保证其基本安装尺寸及组合仪表等通用件(COPY件)选型的前提下和空间布置尺寸下,根据满足人机工程原则和造型与美学原则,对仪表板进行重新造型设计。4布置建模要求(1)以上零部件在边界和安装定位硬点的建模要求误差为-0.25+0.25mm;(2)非定位点面及形状建模误差为-3+3mm。5悬架设计时前后悬架偏频取值较高、前悬架偏频略低于后悬架使赛车在具有更可靠的操纵稳定性的同时,减小了纵向角振动、提高乘坐舒适性。悬架尺寸布置及建模要求:(1)总布置建模时要将沿用件尽力建准,定位面误差应在-0.250.25之间,非定位面误差应在-1+1mm,车轮轮辋定位和按装面建模精度误差为-0.25+0.25mm,转向节或轮轴轮毂及轮辋按装平面的建模轴向精度误差为-0.25+0.25mm。(2)转向节球头坐标定位建模精度空间误差为-0.25+0.25mm。(3)导向杆的长度误差控制在-0.25+0.25mm,其他方向形状误差为-2+2mm。(4)副车架按装定位孔位定位面硬点建模误差为-0.25+0.25mm,其余外形结构误差为-3+3mm。这样的误差是不能作为产品数模的,只能作为总布置之用。6.1.3 车架总成外形及转向系的布置1车架前部的变断面,除要保证足够的强度和刚度外,外形的变化及选择,要考虑布置上的需要和冲压工艺性对车架总成的外宽,其前、中、后部不等,主要取决于布置上的需要。前部外宽取决于发动机的外宽及悬置结构的布置、散热器的尺寸及悬置、前轮距、前轮胎的型号及车轮的最大转角、转向纵拉杆和减振器的布置、前悬架的结构型式和布置位置等因素。后部车架的外宽取决于后悬架的结构、尺寸、布置及后轮胎等型号、布置尺寸、整车外宽。轿车车架主要根据布置需要,多采用承载式车身。车架总成的横梁布置应均匀、结构合理,在胶板上有总成固定支架的地方,应布置横梁,以便减少纵梁腹板的侧弯。2转向系统布置,主要是保证驾驶员操纵轻便、舒适,并使汽车具有较高的机动性和灵敏度,转弯时减少车轮的侧滑,减轻转向盘上的反冲力和有自动回正作用。关键要保证转向传动装置及拉杆系统有足够的刚度和较小的传动比变化量。3转向系统尺寸布置及建模要求:(1)转向器与其他件之间间隙一般为1015mm,转向系统运动部件与其他件间隙在运动过程中和静态都应在1525mm;(2)转向器外形建模精度为-1+1mm 之间;(3)转向器安装孔位和摇臂轴孔及断开点球头中心等硬点位置度建模精度误差为-0.25+0.25mm;(4)转向节及转向柱等零部件外形建模精度误差为-0.5+0.5mm;(5)转向柱按装定位孔位硬点位置度建模精度为-0.25+0.25mm;(6)转向系统设计计算详见后面章节;(7)转向器支架的按装定位孔位硬点位置度建模精度误差为-0.25+0.25mm;(8)转向器支架建模精度误差为-0.5+0.5mm,按装定位建模精度误差为-0.25+0.25mm;(9)螺栓与孔间有 2mm 设计间隙,以便于装配。6.1.4 制动系及进、排气系统的布置1制动总成中,采用了2个独立的制动主缸分别控制前轮与后轮的制动回路,这样就可以在一条制动回路制动失效或发生损坏的情况下,另一路仍然可以正常工作,从而提高车辆的可靠性和安全性;为获得负或小侧偏移距,前悬架和后悬架均采用盘式制动器。2驻车制动器布置驻车制动手柄一般布置在驾驶员右侧附仪表板上,便于操纵,操纵行程内不得有任何零部件干涉。3制动系统尺寸布置及建模要求:(1)定位面和孔位建模精度误差为-0.25+0.25mm,其余部分建模误差可以为-3+3mm。(2)制动地板和制动鼓之间按装定位误差为-0.25+0.25mm,可以不详细建内部结构,可合一起只建外形和按装面数模。(3)制动管路的布置可以先粗后精,开始可选定管路形式然后粗排管路,以便车身地板设计时考虑到筋槽用于布置制动管路。以便车身设计时顺便考虑一下制动管路的布置。4空气滤清器的布置原则:空气滤清器及进气管路是保证发动机得到充足和清洁空气的通道,所以吸气口要放在空气畅通、清洁、灰尘少的部位,管道长度应尽量短,以便减少阻力。空气滤清器的容量要足够,特别在风沙、灰尘大的地区,要加大空气滤清器的容量,以增加滤清效果,减少发动机的磨损和保证其正常工作。5排气管的布置原则:排气管的布置要保证发动机排气畅通,阻力小,同时尽量减少噪声和振动,排气口要朝左或右,不许朝向人行道。排气管的布置与油箱的距离应大于 30mm,若布置不开时,中间可加隔热板排气管的任何部分(除排气尾管的排气口外)都不能发生漏气现象,以防止产生振动的噪声。6消声器的布置原则:消声器进气管应尽量与动力总成固定在一起,以减小振动干涉。排气系统在整车上要用软垫进行支撑和固定,以减少管道各接口处的振动和干涉。在布置消声器时,应选择合适的离地间隙,不应影响通过性。6.2主要总成硬点概述6.2.1 整车设计基准整车绝对坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。绝对坐标系的定义如下:高度方向,上正下负;宽度方向,取汽车的纵向对称中心线为 Y 零线,左负右正;长度方向,取通过汽车前轮中心的垂线为 X 零线,前负后正。6.2.2 总体设计方案及主要硬点1整车总体技术硬点以整车方案为指导,总体技术硬点如表6.1所示:表6.1 总体技术硬点基本形式裸露式车轮和敞开式驾驶舱(方程式车型)驱动形式动力总成后置后轮驱动外形尺寸长mm2968宽mm1468高mm1497轴距mm1940轮距前轮距mm1245后轮距mm1180前悬mm742.6后悬mm285.4质量参数整车整备质量Kg210乘载质量Kg75空载前后轴荷Kg前轴荷89.04(42.4%)后轴荷120.96(57.6%)满载前后轴荷Kg前轴荷130.39(45.8%)后轴荷154.61(54.2%)通过性数据接近角(满载)()20离去角(满载)()88最小离地间隙mm109最小转弯半径m4.4252动力传动系统设计硬点动力总成参数如表6.2所示:表6.2 动力总成参数基本型式横置中置后驱发动机排量(L)0.493发动机CF188发动机最大功率(kw/rpm)24/6500变速器CVT发动机最大扭矩(N.m/rpm)31.16/5500动力传动系统主要布置硬点如表6.3所示:表6.3 动力传动系统主要布置硬点动力总成BHC点坐标X:1377.3;Y:0;Z:190.0发动机缸体对称中心面Y:65,平行于Y平面差速器中心点坐标X:1959.6;Y:88.2;Z:106.1发动机悬置中心点坐标前X:1212.9;Y:49.0;Z:494.9后X:1553.8;Y:56.0;Z:356.9左X:1345.3;Y:65.0;Z:50.0右X:1601.8;Y:65.0;Z:37.0发动机输出轴中心左传动轴X:1377.3;Y:-54.0;Z:19.0.0右传动轴X:1377.3;Y:196.0;Z:190.0后左半轴理论长度mm667.5后右半轴理论长度mm491.2油底壳最小离地间隙mm146.53底盘系统布置方案及主要硬点(1)悬架车轮系统悬架车轮系统的主要布置硬点如表6.4所示:表6.4 悬架车轮系统的主要布置硬点前悬架上支点X:428.0;Y:194.2;Z:530.0前轮总前束0.230后悬架上支点X:1632.5;Y:171.4;Z:563.0主销内倾12.630轮胎类型子午线轮胎主销后倾2.530轮胎规格180/530R13后轮外倾0.630轮辋规格138J后轮总前束0.230前轮外倾0.830前后悬架车轮系统:均采用空间多连杆、圆柱螺旋弹簧,双向作用筒式减振器结构,独立悬架。前车轮为非驱动轮,后车轮为驱动轮。(2)转向系统转向系统主要布置硬点如表6.5所示:表6.5 转向系统主要布置硬点转向器断开点X:170.3;Y:-157.4;Z:213.1转向传动装置方向盘外径260mm内外转角36.4/26传动比44.6转向管柱上下角度65/68/60方向管柱传动轴长度302.5mm 转向器行程1401mm(厂家值)管柱上顶点X:534.3;Y:0;Z:514.8(3)制动系统行车制动系统采用液压助力结构。前后制动器均为强制通风式盘式制动器。制动管路为 X 型双回路布置。驻车制动系统为拉索式手动结构,操纵手柄放置在座椅的右侧。制动系统主要布置硬点如表6.6所示:表6.6 制动系统主要布置硬点制动总泵安装面中心X:-200.0;Y:72.5;Z:170.0前后轮缸数量2,2前后轮缸直径(mm)57.15前后制动半径(mm)92.5制动踏板比5驻车制动转动中心X:754.4;Y:239.7;Z:239.8驻车制动手柄最大角度456.3 本章小结本章主要是对总布置中的各总成部件,如发动机、传动系、悬架、转向系、制动系等进行详细的布置,以保证新车型运转平稳,不影响使用性能的发挥。简述了各总成的布置和各附件的硬点,主要包括确定车身、底盘与零部件相互关系的基准点、线、面及控制结构,为整车的详细设计提供依据和指导。第7章 运动校核7.1 轮胎运动校核确定转向轮运动时占用的空间尺寸、各有关总成的相互位置的合理布置。转向轮跳动如图7.1所示。OO26orOOO1O36o图7.1 转向轮跳动图7.2 转向传动装置与悬架共同工作校核根据汽车理论公式计算汽车的最小转弯半径为:(7.1)=4425mm7.3 制动力匹配校核7.3.1 制动力匹配基本理论公式1制动器制动力前后分配系数(7.2)式中,F1前制动器制动力;F汽车总制动器制动力,FF1F2;F2后制动器制动力。2前、后车轮的法向反作用力在分析前、后轮制动器制动力分配比例以前,首先了解地面作用于前、后车轮的法向反作用力hcabLFZ2GFZ1图7.2 制动力分配如图7.1所示(7.3)(7.4)式中,Fz1为地面对前轮的法向反作用力,N;Fz2为地面对后轮的法向反作用力,N;G为汽车重力(满载总质量与重力加速度乘积);a为汽车质心至前轴的距离;b为汽车质心至后轴的距离;hg为汽车质心高度;为附着系数;L为轴距(ab)。7.3.2 RL7050H0赛车制动力匹配校核1基本参数:整车整备质量:210Kg空载时前轴载荷:89.04Kg空载时后轴载荷:120.96Kg整车满载质量:285Kg轴距:1940mm满载时前轴载荷: 130.39Kg满载时后轴载荷: 154.61Kg质心至前轴距离:a=1051.48mm(满载时)质心至后轴距离:b=888.52mm(满载时)质心高度:hg=320(满载时) ,hg=327(空载时)计算常数(子午线轮胎)F3.05车轮自由直径:d533滚动半径:reFd/2258.7动力半径:rd1.04 re269.048同步附着系数:(取值0.7)2前、后车轮的法向反作用力由式(10-3)和式(10-4)得: 2859.81(888.52+0.7320)/1940 1603.319N 2859.81(1051.480.7320)/1940 =1192.531N3前后制动力矩的比值(7.3) (888.52+0.7320)/(1051.480.7320) 1.3444前后制动力的分配比(7.4)由式(7.6)得: (3200.7888.52)/1940 0.5737.4 本章小结本章主要是对各相对运动部件或零件的运动轨迹进行校核,以防止运动干涉,保证必要的运动间隙。结 论对RL7050H0赛车总布置设计,是基于FSAE所做的一个新车型的总体布置设计,从市场调研着手掌握FSAE技术规范以及各总成在国标中的规定,完成整车型式的选择、尺寸参数和质量参数的确定、车身和发动机的总布置设计以及各总成及附件的布置,经过一系列的匹配工作,通过运动校核,满足整车的使用性能和使用要求,在不影响整车性能的前提下,将成本降到最低。从而实现具有较高的综合水平的整车布置设计。在RL7050H0赛车总布置设计中取得的阶段性成果:(1)充分做好总布置设计准备工作,对整车各总成的型式要有深刻的理解与掌握,以便于进行各总成的匹配工作;(2)明确新车型的主要“目标参数”,包括赛车的最高车速140Km/h、整车整备质量210Kg、总重285Kg、轮胎规格180/530R13,选定CF188发动机,确定CVT变速器变速比0.71至2.87。(3)根据比赛规则,初步确定赛车的外形尺寸参数,包括整车的长度2968mm、宽度1468mm、高度1497mm。(4)进行各总成的匹配工作及总布置图的绘制,明确总布置图绘制的基本原则,合理布置各总成位置。(5)对赛车整体进行运动校核,确保各总成彼此相互运动时无干涉,无卡滞现象的发生。此方案具有一定的可行性,但是整体尺寸偏大。进一步改进赛车动力系统,采用0.6L的发动机,匹配手动变速器,以改善赛车在动态测试项目中的不足。采用链条传动,缩短赛车轴距,减小赛车的转弯半径,以提高其灵活性能,更加合理的布置其他总成,使其能有更加优越的性能。希望在2012年FSAE赛事中能够展现到RL7050H0新车型的风采。参考文献1勾治践,鲍明全.基于ADAMS/VIEW的双横臂式独立悬架机构运动学分析J.机械设计与制造,2007, (8) _3 . 2刘江南,韩旭,陈羽等.双横臂式前独立悬架的改进遗传算法优化J.中国机械工程, 2007, 18 (22) _4 . 3陈俊.基于双横臂独立悬架对轿车转向机构优化设计D.合肥工业大学, 2007. 4勾治践,鲍明全.基于ADAMS/VIEW的双横臂式独立悬架转向梯形机构断开点位置的仿真分析J.机械设计,2007, 24 (3) _3 . 5鲁春艳.基于UG的齿轮齿条式转向器的虚拟设计与分析J.苏州市职业大学学报, 2009, 20 (1) _4 . 6张帮琴.齿轮齿条式机械转向器异响优化设计J.汽车零部件,2009, (9) _3 . 7刘冰.齿轮齿条转向器的建模及分析J.上海工程技术大学学报,2006, 20 (1) _4 . 8周祥基.汽车转向传动机构的类型分析与优化设计D.东南大学,2005. 9阳鹏.齿轮齿条式转向器综合试验台测控系统的设计与开发J.装备制造技术, 2009, (8) _3 . 10张松青,赵晓运.齿轮齿条传动机构参数的优化研究J.煤矿机械,2007, 28 (12) _3 . 11方家.某矿用越野车总体设计D.南京理工大学,2009. 12聂创业.基于多体整车模型的驾驶室悬置隔振系统优化设计平台开发D.武汉理工大学,2007. 13曾志强.小型轮式甘蔗收获机总体研究及车架的设计分析D.广西大学,2007. 14苏信杰.混合动力城市客车总体设计与控制策略的研究D.合肥工业大学,2009. 15李乐.四轮独立驱动电动车控制系统的设计D.武汉理工大学,2010. 16吴亚祥.野马混合动力电动汽车总体结构与控制系统方案研究D.四川大学, 2006. 17杨晓明,潘双夏,邱清盈等.面向整车性能的盘式制动器协同仿真J.农业机械学报,2007, 38 (2) _4 . 18韩智慧.某商用车驾驶室空气悬置及整车性能分析D.西南交通大学,2010. 19高传宝,宋艳冗,李英等.GT-Power模型分析在整车排气噪声性能方面的应用J.汽车技术,2009, (12) _3 . 20陈晓新.基于刚柔耦合的整车动力学建模与悬架隔振性能分析D.合肥工业大学,2010. 21柳杨.悬架的KC特性对整车操纵稳定性影响的初步研究J.机械设计与制造, 2010, (9) . 22钱德猛,程立望,朱凌云等.一种商务车的整车噪声性能试验分析J.现代制造工程,2007,(4) _4 . 23郭伟.汽车前悬架的优化设计及整车稳态转向特性的研究D.西南交通大学,2008. 24赵海宾.汽车整车性能测试分析系统的研究与开发D.河北工业大学,2007. 25江沿.轿车后悬架运动学与整车操稳性仿真D.南京信息工程大学,2010. 26许文娟.汽车制动性测试分析系统的研究D.河北工业大学,2008. 27陈宗好.汽车动力传动系分析、优化匹配的研究及软件开发D.合肥工业大学,2006. 28方英武,张永芳,张广鹏等.车架结构动力学特性边界元法解析J.交通运输工程学报, 2005, 5 (4) _4 . 29徐晓娜.微型客车车身有限元分析及车架结构优化D.南京航空航天大学,2009. 30石磊.某特种车辆一体化复合车架结构分析研究D.南京理工大学,2008. 31胡爱华,李左龙,黄彦等.特种越野车底盘车架结构基本力学性能仿真计算A.中国宇航学会发射工程与地面设备专业委员会学术会议论文集C. 2003 . 32朱喆.越野汽车双横臂式悬架系统平顺性计算及优化J.沈阳理工大学学报,2007, 26 (5) _4 .33成大先.机械设计手册M.北京:化学工业出版社,2004.34Chieh ChenLateral Control of Commercial Heavy VehiclesVehicle System Dynamics2002335Richard SwiftFlexible Body Contact for Modeling Squeal in Braking SystemsMDI North American IJsers Conference2002.致 谢此项设计是在李涵武老师的悉心指导和严格要求下完成的,他是一个学识渊博、品德高尚且和蔼可亲的老师,在设计的每个环节他都严格把关并不辞辛苦的指点,生活上也给予我细致的关心和帮助,所有的一切都深深感动了我。导师开阔的学术视野、严谨踏实的治学作风、乐观积极的人生态度都给我留下了深刻的印象。虽然即将离开大学校园,进入工作岗位,但导师在做人和做事等方面给我的熏陶将使我受益终身,在此对李涵武老师表示衷心地感谢!近二十年的求学生活行将结束,二十年的成长和求学过程都饱含着父母的艰辛劳动和不倦教诲,对父母的感谢、感激与感恩之情溢于言表。我愿在未来的学习和研究过程中,以更加努力的拼搏精神和丰厚的成果来答谢所有曾经关心、帮助和支持过我的亲人、老师和同学们。是你们的默默支持,才有了我今天的成绩!今天的终点将迎来明天更高的起点!衷心感谢各位老师为毕业设计付出的审阅工作付出的辛勤劳动!附 录AFormula SAE is a student competition sponsored by Society of Automotive Engineers (SAE), were students design, build, and compete with a small formula style race car. The basis of the competition is that a fictitious company has contracted a group of engineers to build a small formula car. Since the car is intended for the weekend autocross racer, the company has set a maximum price of $8,500. The race car is also limited to a single 610cc displacement engine with a single inlet restrictor. Other major rules require that the car must have a suspension system with a minimum wheel travel of 50mm and a wheelbase greater than 1524mm. The remainder of the rules define safety requirements such as side impact protection . The competition is separated into static and dynamic events. The static events include the cost nalysis, sales presentation, and engineering design. The dynamic portions of the competition are the 15.25 m diameter skid-pad, 91.44 m acceleration event, 0.8 km autocross, 44 km endurance race, and fuel economy.The FSAE competition has been established to provide an educational experience for college students that is analogous to the type of projects they will face in the work force. To participate in FSAE, student groups work with a project from the abstract design until it is completed. The aspects of engineering design, team work, project management, and finance have been incorporated into the basic rules of Formula SAE.This paper is intended to cover some of the basic concepts of suspension and frame design and also highlights the approach UM-Rolla used when designing their 1996 suspension and frame. The suspension section addresses the basic design parameters and presents specific examples. Next, the frame section discusses how to achieve a compromise with the FSAE design constraints. Finally, the design section gives a brief overview of the design methodology used by UM-Rolla for the 1996 race car.1.Suspension GeometryFSAE suspensions operate in a narrow realm of vehicle dynamics mainly due to the limited cornering speeds which are governed by the racetrack size. Therefore, FSAE suspension design should focus on the constraints of the competition. For example, vehicle track width and wheelbase are factors governing the success of the cars handling characteristics. These two dimensions not only influence weight transfer, but they also affect the turning radius.Not only do the kinematics have to be considered for FSAE suspension, but the components must also be reasonably priced for the cost analysis and marketable for the sales presentation. For example, inboard suspension could be a more marketable design, while outboard suspension might cost less and be easier to manufacture.The suspension geometry section concentrates on some of the basic areas of suspension design and highlights what the UM-Rolla design team selected for their 1996 race car suspension geometry. UM-Rolla chose to use a four wheel independent suspension system with push rod actuated inboard coil over shocks. This decision was mainly because of packaging constraints. Furthermore, the appearance of inboard suspension was considered important for both the design judging and the sales presentation because of its similarity to modern race cars.Also, this section of the paper was written with short-long arm suspension systems in mind. However, many of the concepts are valid for other suspension types.2.Track Width and WheelbaseThe definition of track width is the distance between the right and left wheel centerlines which is illustrated in Figure 1. This dimension is important for cornering since it resists the Upper Ball JointTrack WidthLow Ball JointUpper Control ArmUpper Control ArmFigure 1. Track Widthoverturning moment due to the inertia force at the center of gravity (CG) and the lateral force at the tires . For the designer, track width is important since it is one component that affects the amount of lateral weight transfer . Also, the designers must know the track width before kinematic analysis of the suspension geometry can begin.When selecting the track width, the front and rear track widths do not necessarily have to be the same. For example, track width is typically wider in the front for a rear wheel drive race car. This design concept is used to increase rear traction during corner exit by reducing the amount of body roll resisted by the rear tires relative to the front tires. Based on the corner speeds and horsepower to weight ratio of FSAE cars, this concept should be considered by the designer.The wheelbase also needs to be determined. Wheelbase is defined as the distance between the front and rear axle centerlines, and also influences weight transfer, but in the longitudinal direction. Except for anti-dive and anti-squat characteristics, the wheelbase relative to the CG location does not have a large effect on the kinematics of the suspension system. However, the wheelbase should be determined early in the design process since the wheelbase has a large influence on the packaging of components.For track width and wheelbase starting points, the designers should research the oppositions dimensions to serve as a baseline for their own calculations. FSAE car specifications for the competing teams, including track width and wheelbase, are available in the event program published by SAE.The 1996 design team selected a 1727 mm wheelbase, 1270 mm front track width, and a 1219 mm rear track width, which were based on previous UM-Rolla cars. Although this wheelbase was adequate for the FSAE competition size courses, the UM-Rolla design team has decided to increase the wheelbase for the next car to 1854.2 mm. This increase in wheelbase is an attempt to improve stability for high speed corner entry at the competition.3.Tire and WheelAfter track width and wheelbase considerations have been addressed, tire and wheel selection is the next step in the design process. Since the tire is important to the handling of the vehicle, the design team should thoroughly investigate the tire sizes and compounds available. The tire size is important at this stage of the design since the height of the tire must be known before the geometry can be determined. For example, the tire height for a given wheel diameter determines how close the lower ball joint can be to the ground if packaged inside the wheel.Tire Size - The designers should be aware that the number of tire sizes offered for a given wheel diameter is limited. Therefore, considering the importance of the tire to handling, the tire selection process should be a methodical process. Since the amount of tire on the ground has a large influence on grip, it is sometimes desirable to use wide tires for increased traction. However, it is important to remember that wide tires add rotating mass which must be accelerated by a restricted FSAE engine. This added mass might be more detrimental to the overall performance than the increase in traction from the wider tires. Not only does a wider tire add mass, but it also increases the amount of rubber that must be heated. Since racing tires are designed to operate most efficiently in a specific temperature range, this added material may prevent the tires from reaching the optimum temperature range . The UM-Rolla team used tires for the 1996 competition that were designed to work most efficiently at a minimum of 71.During the selection process the designers must consider how the tires will influence the performance of the entire package. For example, the weather conditions for the FSAE dynamic events might determine which tire compound and tire size should be used for the competition. Another important consideration is the price of the tires since the cost can be a large portion of a teams budget.For the 1996 competition, UM-Rolla selected a 20 by 6-13 racing tire for both the front and rear of the car. Because of the low vehicle mass, a narrow tire was selected so tire temperatures would be greater than previous UM-Rolla designs. This tire selection increased the operating temperature from 48o to 60oC. For the competition, the weather was predicted to be cool, so the team brought a set of hard and soft compound tires. The team chose to use the harder compound since the weather for the endurance was predicted to be clear and warm.Wheel Selection - Once a decision has been made as to which tire sizes to use, the wheel selection should be next. Usually, the wheel dimensions are fixed and allow for little modification. Therefore, it is important to have some design goals in mind before investing in wheels. Generally, the upright, brake caliper, and rotor are placed inside the wheel which requires wheel offset for clearance. It is usually easier to design the suspension geometry if the wheel profile is known. For example, the ball joint location is limited to the area defined by the wheel profile. Some packaging constraints are shown in Figure 2.Other considerations for wheel selection include: cost, availability, bolt circle, and weight. For example, three-piece rims, although expensive, have the distinct advantage of offering many offsets and profiles that can be changed during the design process .Figure 2. 1996 Front SuspensionUM-Rolla designed the 1996 suspension geometry around a wheel profile from a previous car and then acquired a set of three-piece rims to meet the design specifications. All four wheels selected for the 1996 competition were size 6 by 13. This wheel selection allowed for tire rotations, reduced cost, and a wide selection of tire sizes, compounds, and manufacturers.4.GeometryThe designer can now set some desired parameters for the suspension system. These usually include camber gain, roll center placement, and scrub radius. The choice of these parameters should be based on how the vehicle is expected to perform. By visualizing the attitude of the car in a corner, the suspension can be designed to keep as much tire on the ground as possible. For example, the body roll and suspension travel on the skid pad determines, to a certain extent, how much camber gain is required for optimum cornering. The amount of chassis roll can be determined from roll stiffness while the amount of suspension travel is a function of weight transfer and wheel rates.Once a decision has been made about these basic parameters, the suspension must be modeled to obtain the desired effects. Before the modeling can begin, the ball joint locations, inner control arm pivot points, and track width must be known.The easiest way to model the geometry is with a kinematics computer program since the point locations can be easily modified for immediate inspection of their influence on the geometry. Should a dedicated kinematics computer program not be available, then a CAD program can be used simply by redrawing the suspension as the points are moved.When designing the geometry, it is important to keep in mind that designing is an iterative process and that compromises will be inevitable. For instance, the desired scrub radius might not be possible because of packaging constraints. When modeling the suspension, the designers should not aimlessly modify points without first thinking through the results. For example, the designer should visualize how the wheel will camber relative to the chassis when making the lower A-arm four times longer than the upper A-arm. One method that can be used to visualize the results is the instant center location for the wheel relative to the chassis. Another method is to use the arcs that the ball joints circumscribe relative to the chassis. For a complete explanation for determining suspension point locations from instant center locations refer to Milliken .Scrub Radius, KPI, and Caster - The scrub radius, or kingpin offset, is the distance between the centerline of the wheel and the intersection of the line defined by the ball joints, or the steering axis, with the ground plane which is illustrated in Figure 2. Scrub radius is considered positive when the steering axis intersects the ground to the inside of the wheel centerline. The amount of scrub radius should be kept small since it can cause excessive steering forces . However, some positive scrub radius is desirable since it will provide feedback through the steering wheel for the driver .Kingpin inclination (KPI) is viewed from the front of the vehicle and is the angle between the steering axis and the wheel centerline . To reduce scrub radius, KPI can be incorporated into the suspension design if packaging of the ball joints near the centerline of the wheel is not feasible. Scrub radius can be reduced with KPI by designing the steering axis so that it will intersect the ground plane closer to the wheel centerline. The drawback of excessive KPI, however, is that the outside wheel, when turned, cambers positively thereby pulling part of the tire off of the ground. However, static camber or positive caster can be used to counteract the positive camber gain associated with KPI.Caster is the angle of the steering axis when viewed from the side of the car and is considered positive when the steering axis is tilted towards the rear of the vehicle . With positive caster, the outside wheel in a corner will camber negatively thereby helping to offset the positive camber associated with KPI and body roll. Caster also causes the wheels to rise or fall as the wheel rotates about the steering axis which transfers weight diagonally across the chassis . Caster angle is also beneficial since it will provide feedback to the driver about cornering forces .UM-Rollas suspension design team chose a scrub radius of 9.5 mm, zero degrees of KPI, and 4 degrees of caster. This design required the ball joints to be placed near the centerline of the wheel, which required numerous clearance checks in the solid modeling program.Roll Center - Once the basic parameters have been determined, the kinematics of the system can be resolved. Kinematic analysis includes instant center analysis for both sets of the wheels relative to the chassis and also for the chassis relative to the ground as shown in Figure 3. The points labeled IC are the instant centers for the wheels relative to the chassis. The other instant center in Figure 3, the roll center, is the point that the chassis pivots about relative to the ground . The front and rear roll centers define an axis that the chassis will pivot around during cornering. Since the CG is above the roll axis for most race cars, the inertia force associated with cornering creates a torque about the roll center. This torque causes the chassis to roll towards the outside of the corner. Ideally, the amount of chassis roll would be small so that the springs and anti-roll bars used could be a low rate for added tire compliance . However, for a small overturning moment, the CG must be close to the roll axis. This would indicate that the roll center would have to be relatively high to be near the CG. Unfortunately, if the roll center is anywhere above or below the ground plane, a jacking force will be applied to the chassis during cornering forces . For example, if the roll center is above ground, this jacking force causes the suspension to drop relative to the chassis. Suspension droop is usually undesirable since, depending on the suspension design, it can cause positive camber which can reduce the amount of tire on the ground. Conversely, if the roll center is below the ground plane, the suspension goes into bump, or raises relative to the chassis, when lateral forces are applied to the tires. Therefore, it is more desirable to have the roll center close to the ground plane to reduce the amount of chassis vertical movement due to lateral forces .Figure 3. Front Roll CenterSince the roll center is an instant center, it is important to remember that the roll center will move with suspension travel. Therefore, the design team must check the migration of the roll center to ensure that the jacking forces and overturning moments follow a relatively linear path for predictable handling . For example, if the roll center crosses the ground plane for any reason during cornering, then the wheels will raise or drop relative to the chassis which might cause inconstant handling.The roll center is 35.6 mm below ground in the front and 35.6 mm above ground in the rear for UM-Rollas 1996 car. Since none of the previous UM-Rolla cars had below ground roll centers, the selection of the 1996 points was basically a test to understand how the below ground roll center affected the handling. Because of the large roll moment, the team designed enough camber gain into the suspension to compensate for body roll associated with soft springs and no anti-roll bar. The team was very happy with the handling but decided, for the next car, to have both roll centers above ground for a direct comparison between both designs.Camber - Camber is the angle of the wheel plane from the vertical and is considered to be a negative angle when the top of the wheel is tilted towards the centerline of the vehicle. Camber is adjusted by tilting the steering axis from the vertical which is usually done by adjusting the ball joint locations. Because the amount of tire on the ground is affected by camber angle, camber should be easily adjustable so that the suspension can be tuned for maximum cornering. For example, the amount of camber needed for the small skid pad might not be the same for the sweeping corners in the endurance event.The maximum cornering force the tire can produce will occur at some negative camber angle . However, camber angle can change as the wheel moves through suspension travel and as the wheel turns about the steering axis. Because of this change, the suspension system must be designed to compensate or complement the camber angle change associated with chassis and wheel movements so that maximum cornering forces are produced.The amount of camber compensation or gain for vertical wheel movement is determined by the control arm configuration. Camber gain is usually obtained by having different length upper and lower control arms. By using different length control arms, the ball joints will move through different arcs relative to the chassis. The angle of the control arms relative to each other also influence the amount of camber gain. Because camber gain is a function of link geometry, the amount of gain does not have to be the same for both droop and bump. For example, the suspension design might require the wheels to camber one degree per 25mm of droop versus negative two degrees per 25mm of bump.Static camber can be added to compensate for body roll, however, the added camber might be detrimental to other aspects of handling. For example, too much static camber can reduce the amount of tire on the ground, thereby affecting straight line braking and accelerating. Similarly, too much camber gain during suspension travel can cause part of the tire to loose contact with the ground.Caster angle also adds to the overall camber gain when the wheels are turned. For positive caster, the outside wheel in a turn will camber negatively, while the inside wheel cambers positively. The amount of camber gain caused by caster is minimal if the wheels only turn a few degrees. However, FSAE cars can use caster angle to increase the camber gain for the tight corners at the FSAE competition.UM-Rolla designed for a relatively large amount of camber gain since anti roll bars were not used in the 1996 suspension design. The use of low wheel rates with a large roll moment required the suspension to compensate for the positive camber induced by chassis roll and suspension travel. The camber gain for UM-Rollas 1996 car was from both the caster angle and the control arm configuration.5.Steering SystemThe steering geometry has a large influence on the handling characteristics of the vehicle. For example, if the system is not properly designed, then the wheels can unexpectedly toe in or out during suspension travel. This toe change is referred to as bump steer which is described in detail in both references . Bump steer is basically undesirable since the car changes direction when the driver does not expect the change .Ackermann steering must also be considered during the design process. Ackermann steering occurs when the outside wheel turns less than the inside wheel. This is possible since the amount of steering angle for each wheel is determined by the steering geometry. Reverse or anti-Ackermann occurs when the outside wheel turns more than the inside wheel during cornering .During a turn, the inside wheel travels around a smaller geometric radius than the outside wheel. Ackermann steering can be used so that the wheels travel about their corresponding radii, theoretically, eliminating tire scrub. However, designing for precise Ackermann steering might not provide the best handling since tire slip angles influence the actual turning radius . The designer must decide, based on the requirements, if the steering system design will include Ackermann geometry.UM-Rolla placed the rack and pinion in front of the axle centerline near the lower control arms because of packaging constraints. This placement required extra room in the frame design since the driver had to straddle the steering column. After building a test car that was hard to steer because of a half a turn lock to lock system, the 1996 steering system was designed to be one turn lock to lock. This was accomplished by changing the rack and pinion ratio instead of increasing the steering arm length because of packaging constraints. The system specifications for the 1996 car are: 76mm steering arms, 250mm diameter steering wheel, and 51mm of rack travel per one pinion revolution. These specifications were retained for the next race car design because of the handling characteristics. The 1996 UM-Rolla design has a small amount of anti-Ackermann due to packaging.FSAE suspension not only has to be competitive on the racetrack, but the suspension must also perform well in the static events. For the dynamic events, the designers should concentrate on the geometry so that most of the tire will stay in contact with the ground for all normal driving situations: braking, accelerating, and cornering. The suspension system must also be designed so that it is easy to manufacture and is reasonably priced for the cost analysis. To reduce the cost and complexity of the 1996 race car, UM-Rolla designed the system so that the wheels, hubs, and bearings were the same for each corner of the car.Designing the suspension geometry is only a small part of building a vehicle. A well engineered suspension system does not automatically make a fast race car. Although this paper has concentrated on the design aspect, development is just as important to the success of the package. Because the design process must take place within a given time constraint, the first suspension design might not provide the best handling. It is not uncommon to make design changes after the car is completed. It is more important for FSAE teams to compromise the overall design so that the car can be completed and tested prior to competition.6.FrameThe purpose of the frame is to rigidly connect the front and rear suspension while providing attachment points for the different systems of the car . Relative motion between the front and rear suspension attachment points can cause inconsistent handling . The frame must also provide attachment points which are not going to yield within the cars performance envelope.There are many different styles of frames; space frame, monocoque, and ladder are examples of race car frames. The most popular style for FSAE is the tubular space frame. Space frames are a series of tubes which are joined together to form a structure that connects all of the necessary components together. However, most of the concepts and theories can be applied to other chassis designs.Figure 4. UM-Rollas 1996 Frame Design7.StiffnessThe suspension is designed with the goal of keeping all four tires flat on the ground throughout the performance range of the vehicle. Generally, suspension systems are designed under the assumption that the frame is a rigid body. For example, undesirable changes in camber and toe can occur if the frame lacks stiffness. Superimposed images of a frame subjected to a torsional load and an undeflected frame and can be seen in Figure 5.Figure 5. Chassis DeflectionUM-Rolla has found that in most cases, a stiff chassis will not have a problem with yielding. However, some care should be taken to ensure that the attachment points of the frame do not yield when subjected to design loads. For example, the engine mounts should be made stiff enough to reduce the possibility of failure.Torsional Stiffness - Torsional stiffness is the resistance of the frame to torsional loads . UM-Rolla used FEA to analyze the torsional stiffness of the 1996 chassis. The solution of the simple rod and beam element model for the frame was roughly 2200 foot pounds per degree of deflection. The 1996 frame weighed approximately 27kg, which UM-Rolla believes is heavier than needed for a two day racing series. However, some extra structure was added to the frame to increase its safety. Also, the drivetrain mounts were significantly strengthened so that the car would be able to serve as a driver training tool for several semesters.As the 1996 frame evolved, the stiffness to weight ratios of different designs were compared. A chassis can be made extremely stiff by adding significant amounts of material to the frame. However, this additional material might degrade the performance of the car because of the added mass.Obviously, torsional rigidity is not the only measurement for analyzing the stiffness of a chassis. Bending stiffness can also be used to analyze the efficiency of a frame design. However, bending stiffness is not as important as torsional stiffness because deflection due to bending will not affect wheel loads . Because the design time is severely limited in FSAE, UM-Rolla has found that a torsional analysis is adequate to determine the relative stiffness of different frame designs.Triangulation - Triangulation can be used to increase the torsional stiffness of a frame, since a triangle is the simplest form which is always a structure and not a mechanism. Obviously, a frame which is a structure will be torsionally stiffer than a mechanism . Therefore, an effort should be made to triangulate the chassis as much as possible.Visualizing the frame as a collection of rods which are connected by pin joints can help frame designers locate the mechanisms in a design . Designers can also evaluate their frame by checking to see if each pin jointed node contains at least three rods which complement the load path.UM-Rolla chose to use thin wall steel tubing for the 1996 frame design. This required significant triangulation of the frame, since thin wall tubing performs very well in tension and compression but poorly in bending. The components which produce significant amounts of force, for example the engine and suspension, were attached to the frame at a triangulated point.Figure 6. Frame Triangulation(Frame, Side View)Previous UM-Rolla frames have lacked adequate triangulation for highly loaded components. These components were attached to the frame with load bearing tabs which were welded at the midpoint of a single section of tubing. As expected, this tube bent like a simply supported beam and caused unwanted movement of the attached component. Although these designs worked for the duration of the competition, they invariably failed by fracturing the tube or breaking the tab. For the 1996 car, all of the highly loaded components were attached to triangulated points.Area Moment of Inertia - The area moment of inertia has a large influence on the stiffness of a structure. Therefore, the farther material is from the axis of twist the stiffer the frame will be in bending and torsion. This concept is implemented by adding structural side pods to the basic frame.Figure 7. Structural Sidepods(Frame Top View)Figure 7 shows the triangulated side pods which were used to increase the torsional rigidity of the 1996 frame. This material also increased the side impact protection. The sidepods add structure as far from the centerline of the chassis as possible which increases the area moment of inertia between the front and rear suspensions. Most of the successful FSAE cars have structural side pods for safety and increased torsional stiffness.In addition to using the sidepods to increase the stiffness of the chassis, UM-Rollas 1996 entry used the roll hoop and down tubes to increase the rigidity of the frame. The 1997 FSAE rules state that the tubes from the top of the roll hoops to the base of the frame have to be 0.049 wall when fabricated from 4130 steel . Because these tubes are stiffer than 0.035 wall tubing, the frame stiffness can be substantially increased by properly placing the roll hoop tubes.8.Load PathDuring the design process, it is important to consider how loads are passed into the frame. A Load Path describes the path through which forces are dissipated into the frame. For example, Figure 8 shows how the vertical load generated by the weight on the wheel will travel through the upright, push rod, rocker, coil-over shock and into the structure of the frame. Of course, to properly investigate the forces involved, a freebody diagram for each component would have to be drawn. Nevertheless, this concept can be used by the designers to visualize how the frame should be constructed.9.Crash WorthinessIn the interests of safety for the drivers, the Formula SAE Rules Committee has written very specific rules to protect the driver from frontal, side, and roll-over crash situations. Figure 8. Load Path for Front Inboard SuspensionWhile designing the 1996 entry, the UM-Rolla team found that if the FSAE rules were followed and the frame was optimized for stiffness, it was obvious that the car would be adequate for most possible crash situations. Due to the possibility of a head on collision, more structure was placed in the nose of the frame than was necessary for the 1996 rules. Based on past experiences, the team believed that the probability of the vehicle running into a solid object, such as a curb or loading dock, was high. Therefore, considerable thought was given to the safety of the drivers feet during a frontal impact.10.PackagingEach of the systems of a FSAE car must be packaged within the frame. The placement of these components limits the available paths for tubes, which is usually detrimental to the chassis stiffness . For example, the driver occupies a section of the frame which could be used to significantly increase the stiffness of the frame.Suspension - Packaging of the suspension to the frame is generally not an interference problem since most of the components are exterior to the frame. However, it is especially important to attach the suspension components to stiff portions of the chassis to correctly dissipate the loads that will be created by these components .Designing the frame so the control arms are attached to a stiff portion of the chassis can sometimes be very difficult. UM-Rolla found that changing the distance between the control arm pivot points can help to optimize the load path for the control arms. This distance can be changed because it will not affect the suspension geometry, since the rotational axis of the control arm is not affected. However, decreasing the span of the control arms will reduce the arms ability to react to the forces which are generated by accelerating or braking.UM-Rolla found that the suspension should be designed concurrently with the frame. This allows the designer to concentrate on the load paths from the push rods and rockers so that the frame can efficiently react to the loads.Drivetrain - Correctly attaching the components of the drivetrain to the frame is very important for extended frame life. The relative stiffness between the engine, differential, and frame is not as critical as when attaching the suspension. This is due to the fact that most FSAE chassis layouts have short distances between the drivetrain components. The main design point is to ensure that the frame does not break during an incorrect downshift or a violent release of the clutch. Most of the frame failures which UM-Rolla has experienced were due to fractures in the engine mounts or differential mounts.When designing the frame around the motor and differential, on chain driven designs, sufficient clearance must exist so that several front and rear sprockets can be used. This will allow a wide selection of final drive ratios. Several UM-Rolla entries have been built with the inability to change the final drive ratio. This has proven to be a drawback when trying to drive the race car in the confined space of the FSAE competition and the more open spaces of autocrosses.Ease of maintenance is also an important design consideration when designing the frame around the drivetrain. UM-Rolla has found that providing clearance for direct removal of the engine will reduce the amount of mechanics stress involved with engine changes. It has also been found advantageous to provide simple access to all covers on the motor such as the clutch, alternator, and valve cover.11.ErgonomicsProperly incorporating the driver into a FSAE frame design can be very difficult because of wide variations in driver sizes. Each driver interface has to be designed so that it is comfortable for a wide variety of drivers. UM-Rollas 1996 entry is able to accommodate drivers who range in height from 1.58m to 1.90m.Controls - Designing the frame around the controls, such as the steering wheel and pedals, is a matter of ensuring that the structure of the frame does not interfere with the drivers task. Also, the controls must be adequately supported by the frame so that the attachment points do not yield while the car is being driven.The frame should not interfere with the drivers as they move through the full range of motion which is required to drive the car. The drivers arms are a particular problem in this area. In the past, UM-Rolla has designed cars which were very difficult for large drivers to keep their arms inside the cockpit. Fortunately, this was remedied on the 1996 chassis by increasing the cockpit cross sectional area.The frame designers should look beyond the structural considerations of the frame when designing it so major oversights are reduced. For example, a previous team encountered a packaging issue for their chassis when they placed the steering wheel directly over the rack and pinion. This was a design error because the universal joint between the steering wheel and the rack and pinion was not able to bend 90o.Safety Harness - Most importantly, the attachment points of the harness must be strong enough to ensure that they will not fail during a crash. They also must be positioned so that the buckles will not bind when the harness is tightened . This has been a problem for UM-Rolla in the past when trying to placing the attachment points for both large and small drivers.Egress - Rapid egress is very important since the 1997 rules mandate that the driver must exit the vehicle within five seconds . Past UM-Rolla cars had a difficult time with the egress requirement. These race cars were designed with structural tubes that left an area of only 165mm high for the drivers feet and legs to fit through. This was a situation were the designers compromised ergonomics for chassis stiffness.It is obvious that frame design is a compromise between stiffness, weight, and packaging. The stiffness of the frame is important because it affects the overall performance of the vehicle. If too much material is added to the frame in the quest for stiffness, the performance of the vehicle will be degraded because of the added mass. Not only must the frame be stiff and light, it must also package all of the vehicle systems. Therefore, the design of the frame will require many iterations to achieve a balance. The timeline of the competition will limit the number of iterations possible so that the car can be built and tested. If the basic design concepts have been applied to the frame and some thought has been placed into the integration of each sub-system, the end result will be a sound foundation for a FSAE car.UM-Rollas 1996 Design Methodology.Although it is simple to design a single part or system, it is more difficult to incorporate all of the parts and systems into a single package, such as a race car. The design team for each system or part must keep in mind how their design will affect the overall package. For example, the suspension design team must leave enough room between the left and right control arm pivot points so that the drivers legs will have enough room.This section explains the basic design sequence that UM-Rolla used for the 1996 car. This sequence is not the only avenue for the design of a vehicle. However, UM-Rolla has found that it is a logical sequence for the design of their FSAE cars.12.LayoutUM-Rolla started the 1996 design by determining the track width and wheel base dimensions of the vehicle. Once this was completed, the driver and engine placement was sketched into the design for an estimation of weight distribution. Some thought was given to the placement of other important or hard to packages systems. For example, the fuel system had to be packaged near the center of gravity to reduce the effects of its varying mass during the race.After the track width and wheelbase had been determined, the team made a preliminary decision on tire and wheel size. The design team settled on some basic suspension parameters: camber gain, caster, KPI, scrub radius, and roll center height. This was needed so that the design team could model the suspension geometry.UM-Rolla used a suspension modeling program to analyze camber change and roll center movement. The suspension was modeled with 0o of static camber, because static camber could be optimized during testing. During the modeling of the suspension, the team looked at vertical and lateral roll center movement and camber change as the chassis went through 25mm of vertical travel and 2 degrees of roll. It was necessary to perform several iterations before a satisfactory geometry was obtained.13.Solid ModelingOnce the preliminary suspension design was complete, the next step was to enter the suspension points into a 3-D computer model. Then the preliminary mechanical designs of the suspension components were drawn. The suspension was moved through its range of motion in a solid modeling package to check for interference between the control arms, tie rods, uprights, and wheels.After the suspension system had been checked for interference problems, the next step was to start designing the frame. UM-Rolla used a CAE package to model the frame structure. The major components, such as, engine and differential, were drawn into the model. To simplify this process, only mounting points or rough sketches were entered. Also, sufficient room was designed into the frame for the systems that had not been completed. For instance, ample room was left for the controls needed for various driver sizes.Figure 9. Major Frame ComponentsAfter the major components had been modeled, the first roll hoop design was placed into the model. This was needed because it represents a major component of the frame which is defined by the FSAE rules. Figure 9 represents this early frame model.Figure 10. Connecting the DotsAt this point, the inboard suspension system had not been designed. However, some preliminary designs for the inboard suspension allowed the load path theory to drive the design of the structure.14.Connecting the PointsOnce the main points of the frame were defined in the model, the connect the dots phase could begin. By using the concepts of triangulation and area moment of inertia, the defined points were connected with tubes. Connecting the dots, simply consists of attaching the front suspension to the rear suspension while providing attachment points for the systems of the car. Refer to Figure 10 for the final 1996 frame design.15.AnalysisOnce all of the points had been connected, the frame was ready for finite element analysis. This analysis was performed on a commercially available CAD/FEA software package. Beam elements were used for the major frame structure while rod elements were used for the suspension as illustrated in Figure 11. A more representative load could be applied by using a model with the suspension attached. Since accurately modeling a welded joint is beyond the undergraduate level, this model was strictly for determining if the frame was a structure.Figure 11. FEA ModelAfter the model was solved, the results could be viewed as an animation to expose any weak links. This approach allowed for quick what ifs. For example, if an area appeared to be over stressed, a different geometry for that joint could be substituted and modeled. Also, the UM-Rolla designers found that tubes with long versus short spans between joints should have a larger area moment of inertia to increase the stiffness.To reduce the cost of the race car, only a small selection of tube sizes were used, which made the modeling simpler since wall thickness optimization was limited. The 1996 UM-Rolla team used the following tubing sizes to construct the structure of the 1996 chassis: 1 x 0.065 (Roll Hoops)1 x 0.0353/4 x 0.0355/8 x 0.035To simplify the complexity of the frame construction, the number of tubes which had bends in more than one plane was reduced to only two.Although this is not the only sequence for designing a FSAE car, UM-Rolla has successfully used this basic method for the past three designs.Unlike the school environment, there are no right or wrong answers in the FSAE competition. The designers can make successive iterations on their designs until a satisfactory compromise has been reached. Constructing FSAE cars imparts to college students the knowledge of how to function in real world design groups while also introducing them to the entire design process involved in a products development.During the design process, the team must achieve a compromise between cost, manufacturing, performance, and design time so that their car will be competitive in all aspects of the FSAE competition. The timeline of the competition, combined with the rigorous schedule of college, limits the amount of iterations for each design. However, the team should understand that it will take several iterations to converge on a satisfactory design. The amount of time used for the design process subtracts from the time available for manufacturing and testing. Although this paper has concentrated on design, it is very important to test the car so that any design oversights will be highlighted before competition.A poorly engineered vehicle may not perform well at the competition. Conversely, a highly engineered car may not perform well unless there is time to manufacture and test. For the inexperienced FSAE team, concentrating on complex engineering techniques can be too time consuming for the amount of performance gained. Therefore, FSAE teams should use basic engineering concepts to design their car. This will simplify the design process and allow the team to finish the car as early as possible to allow for testing and redesign.附 录B方程式SAE是由美国汽车工程师协会(SAE)的赞助,学生必须设计、制作并跟一个小公式风格赛车。竞争的基础是一个虚拟的公司承包的一组工程师建造一个小公式的车。由于汽车是专为周末赛车公司建立一个最大价格为8500美元。这赛车也局限于单一的610 cc排量发动机和一个进节流。其他主要规则要求汽车悬架系统必须具有最低车轮旅行50毫米和轴距大于1524毫米。剩下的规则定义的安全要求,如侧面碰撞保护等。竞争是分为静态和动态的活动。静态事件中包括成本分析,以及工程设计的销售报告。动态部分竞争是直径15.25米加速度的事件、91.44米耐力比赛, 0.8公里汽车交叉和44公里燃油经济性。竞争的FSAE已被建立,以提供一个大学生教育经验类似类型的项目也将面临在劳动力。参与FSAE学生团体的工作,从抽象的设计项目,直到它完成。这方面的工程设计、团队合作、项目管理、金融已纳入基本规则公式SAE。本文旨在介绍一些基本概念的悬架和框架设计,也凸显出罗拉设计方法时使用1996年暂停和框架。部分讨论悬架设计的基本参数,介绍了具体的例子。其次,框架部分将讨论如何实现的让步FSAE设计约束。最后,设计部门作了一个简要的概述罗拉设计方法采用1996年赛车。1.悬架系统的几何形状FSAE悬架在一个非常狭窄的领域操作对车辆动力学主要由于有限的转弯速度是受赛马场的尺寸。因此,FSAE悬架的设计应该集中在约束下的竞争。例如,车辆跟踪宽度和轴距的成功因素控制汽车的操纵特性。这两个维度不但影响重量转移,但他们也会影响的转弯半径。不仅运动学必须考虑FSAE悬架,但也必须价格合理成分的成本分析、市场销售的简报。例如,内悬架可能是一个更加卖座悬架设计中,当外更少、更代价更容易制造。悬架系统的几何形状的部分集中于一些基本的地区,强调了悬架的设计的设计团队罗拉选定其1996赛车悬架系统的几何形状。罗拉选择使用一个四轮独立悬架系统和推杆内线圈驱动的冲击。这一决定主要是因为组件的约束。此外,内悬架的出现被认为是重要的对于设计和销售报告来判断类似,所以人们把它称为现代赛车。2.轮距和轴距轮距的定义之间的距离中心线左、右两轮实例于本许可证图1。这个维度是很重要的,因为它抗拒转向颠覆时刻由于惯性力在引力中心(CG)、侧向力轮胎。为设计师,跟踪宽度是很重要的,因为它是一个部件的数量影响横向重量转移。同时,设计师必须知道在运动学分析轮距的悬架系统的几何形状可以开始了。轮距上控制臂下控制臂上球头下球头图1 轮距示意图当选择轮距、前方和后方,无需轮距不尽相同。例如,追踪是典型的宽宽度在前线的后轮驱动的赛车。这个设计理念用于增加后方牵引在角落的数量出口减少身体的滚动抵抗后方轮胎相对于前胎。基于角落里的速度和马力体重的比例FSAE汽车,这个概念应考虑设计者。轴距也需要的是确定的。轴距被定义为之间的距离轴中心线前方和后方,也影响重量转移,但在纵向方向。轴距相对的CG的位置不会有很大的影响悬架系统的运动学。然而,轴距应确定早在设计过程中有一个大轴距以来影响产品的组件组件。轮距和轴距的起点,设计师应当研究对手的尺寸来作为自己的计算基线。FSAE汽车规范竞争的团队,包括轮距和轴距,可在事件计划公布SAE。1996年的设计团队挑选了一个1727毫米轴距,1270毫米宽,前跟踪轨迹宽度1219毫米的后方,根据以往的罗拉汽车。虽然这轴距足够的FSAE大小的课程、竞争罗拉设计团队决定增加汽车轴距接下来1854.2毫米。这个增加是为了提高其稳定性,适合高速弯在竞争。3.轮胎和车轮在轮距和轴距考虑过演说、轮胎和车轮选择下一步的工作是在设计过程中。由于轮胎的处理是重要的车、设计团队要深入研究轮胎尺寸和化合物可用。轮胎的大小也是很重要的在这个阶段的设计达到高峰以来,杀伤力最大的轮胎几何之前,必须知道被确定。例如,对于一个给定的轮胎高度圆盘直径决定关闭低球接头可到地上如果组件内车轮。轮胎大小设计师应该知道号码不同尺寸的轮胎给一个给定圆盘直径是有限的。因此,考虑轮胎的重要性处理,轮胎的选择过程应该是一个井然有序的过程。由于数量的轮胎在地面上有一个很大的影响,它有时是理想控制使用广泛的轮胎增加抓地力。然而,重要的是要记住宽轮胎加旋转质量,必须加速了一个受限制的FSAE引擎。该附加质量可能更为有害于他们的整体性能比增
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:RL7050H0总布置设计【说明书+CAD】
链接地址:https://www.renrendoc.com/p-76688847.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!