


已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.2椭圆的几何性质,教学目标,知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义,过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养由椭圆的标准方程和非负实数的概念能得到椭圆的范围;由方程的性质得到椭圆的对称性;先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率板书212椭圆的简单几何性质,复习:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2|)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,二、椭圆简单的几何性质,1、范围:-axa,-byb知椭圆落在x=a,y=b组成的矩形中,椭圆的对称性,2、对称性:,从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。,3、椭圆的顶点,令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。,根据前面所学有关知识画出下列图形,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,4、椭圆的离心率,离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0b,a2=b2+c2,|x|b,|y|a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0,c)、(0,-c),同前,同前,同前,例1已知椭圆方程为16x2+25y2=400,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。,10,8,6,80,解题的关键:1、将椭圆方程转化为标准方程明确a、b,2、确定焦点的位置和长轴的位置,已知椭圆方程为6x2+y2=6,它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。,2,练习1.,例2过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于,解:(1)由题意,,又长轴在轴上,所以,椭圆的标准方程为,(2)由已知,所以椭圆的标准方程为或,例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。,答案:,分类讨论的数学思想,小结:,本节课我们学习了椭圆的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义。了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系,这对我们解决椭圆中的相关问题有很大的帮助,给我们以后学习圆锥曲线其他的两种曲线扎实了基础。在解析几何的学习中,我们更多的是从方程的形式这个角度来挖掘题目中的隐含条件,需要我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年执法资格通关考试题库附参考答案详解【满分必刷】
- 2025辅警招聘考试题库试题(夺分金卷)附答案详解
- 2024年公务员考试《常识》考前冲刺试卷含答案详解【B卷】
- 康复医学治疗技术副高级职称通关考试题库带答案详解(研优卷)
- 2024年执法资格过关检测试卷及答案详解(历年真题)
- 2024年计算机操作员试卷【培优B卷】附答案详解
- 2025年广东河源职业技术学院招聘博士研究生5人笔试备考题库及参考答案详解1套
- 子宫颈炎课件
- 2025年江西省高校毕业生“三支一扶”计划招募(693名)模拟试卷附答案详解(综合题)
- 高校教师资格证之《高等教育法规》通关考试题库含答案详解(基础题)
- 2025年新城区行政中心建设项目社会稳定风险评估与治理策略报告
- 吡非尼酮对心脏成纤维细胞功能的影响及机制:从细胞到分子层面的解析
- 第一单元试卷(含答案)-2025-2026学年统编版语文三年级上册
- 2025年事业编时政题目及答案
- LNG贮罐安全培训课件
- 2025年上海市普通高中学业水平等级性考试物理试卷(原卷版)
- 《工业机器人编程与应用(FANUC)》高职全套教学课件
- 捡土豆工人劳务合同范本
- 2024年河南省确山县卫生系统招聘考试(护理学专业知识)题含答案
- 2025民航西藏空管中心社会招聘14人(第1期)笔试参考题库附带答案详解(10套)
- SBS防水卷材项目可行性研究报告
评论
0/150
提交评论