




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲直线与圆一、选择题1已知直线l1过点(2,0)且倾斜角为30,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为()A(3,)B(2,)C(1,) D解析:选C直线l1的斜率k1tan 30,因为直线l2与直线l1垂直,所以直线l2的斜率k2,所以直线l1的方程为y(x2),直线l2的方程为y(x2),联立解得即直线l1与直线l2的交点坐标为(1,)2圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|2,则圆C的标准方程为()A(x1)2(y)22B(x1)2(y2)22C(x1)2(y)24D(x1)2(y)24解析:选A由题意得,圆C的半径为,圆心坐标为(1,),所以圆C的标准方程为(x1)2(y)22,故选A3已知圆M:x2y22ay0(a0)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A内切 B相交C外切 D相离解析:选B圆M:x2y22ay0(a0)可化为x2(ya)2a2,由题意,M(0,a)到直线xy0的距离d,所以a22,解得a2.所以圆M:x2(y2)24,所以两圆的圆心距为,半径和为3,半径差为1,故两圆相交4(2019皖南八校联考)圆C与直线2xy110相切,且圆心C的坐标为(2,2),设点P的坐标为(1,y0)若在圆C上存在一点Q,使得CPQ30,则y0的取值范围是()A, B1,5C2,2 D22,22解析:选C由点C(2,2)到直线2xy110的距离为,可得圆C的方程为(x2)2(y2)25.若存在这样的点Q,当PQ与圆C相切时,CPQ30,可得sinCPQsin 30,即CP2,则2,解得2y02.故选C5在平面直角坐标系内,过定点P的直线l:axy10与过定点Q的直线m:xay30相交于点M,则|MP|2|MQ|2()A BC5 D10解析:选D由题意知P(0,1),Q(3,0),因为过定点P的直线axy10与过定点Q的直线xay30垂直,所以MPMQ,所以|MP|2|MQ|2|PQ|29110,故选D6(一题多解)(2019河南郑州模拟)在平面直角坐标系中,O为坐标原点,直线xky10与圆C:x2y24相交于A,B两点,若点M在圆C上,则实数k的值为()A2 B1C0 D1解析:选C法一:设A(x1,y1),B(x2,y2),由得(k21)y22ky30,则4k212(k21)0,y1y2,x1x2k(y1y2)2,因为,故M,又点M在圆C上,故4,解得k0.法二:由直线与圆相交于A,B两点,且点M在圆C上,得圆心C(0,0)到直线xky10的距离为半径的一半,为1,即d1,解得k0.二、填空题7过点(,0)引直线l与曲线y相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于_解析:令P(,0),如图,易知|OA|OB|1,所以SAOB|OA|OB|sinAOBsinAOB,当AOB90时,AOB的面积取得最大值,此时过点O作OHAB于点H,则|OH|,于是sinOPH,易知OPH为锐角,所以OPH30,则直线AB的倾斜角为150,故直线AB的斜率为tan 150.答案:8已知圆O:x2y24到直线l:xya的距离等于1的点至少有2个,则实数a的取值范围为_解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离dr121,即d3,解得a(3,3)答案:(3,3)9(2019高考浙江卷)已知圆C的圆心坐标是(0,m),半径长是r.若直线2xy30与圆C相切于点A(2,1),则m_,r_解析:法一:设过点A(2,1)且与直线2xy30垂直的直线方程为l:x2yt0,所以22t0,所以t4,所以l:x2y40.令x0,得m2,则r.法二:因为直线2xy30与以点(0,m)为圆心的圆相切,且切点为A(2,1),所以21,所以m2,r.答案:2三、解答题10已知点M(1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍(1)求曲线E的方程;(2)已知m0,设直线l1:xmy10交曲线E于A,C两点,直线l2:mxym0交曲线E于B,D两点当CD的斜率为1时,求直线CD的方程解:(1)设曲线E上任意一点的坐标为(x,y),由题意得,整理得x2y24x10,即(x2)2y23为所求(2)由题意知l1l2,且两条直线均恒过点N(1,0)设曲线E的圆心为E,则E(2,0),设线段CD的中点为P,连接EP,ED,NP,则直线EP:yx2.设直线CD:yxt,由解得点P,由圆的几何性质,知|NP|CD|,而|NP|2,|ED|23,|EP|2,所以3,整理得t23t0,解得t0或t3,所以直线CD的方程为yx或yx3.11在平面直角坐标系xOy中,曲线yx2mx2与x轴交于A,B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值解:(1)不能出现ACBC的情况,理由如下:设A(x1,0),B(x2,0),则x1,x2满足x2mx20,所以x1x22.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现ACBC的情况(2)证明:BC的中点坐标为(,),可得BC的中垂线方程为yx2(x)由(1)可得x1x2m,所以AB的中垂线方程为x.联立又xmx220,可得所以过A,B,C三点的圆的圆心坐标为(,),半径r.故圆在y轴上截得的弦长为23,即过A,B,C三点的圆在y轴上截得的弦长为定值12在平面直角坐标系xOy中,点A(0,3),直线l:y2x4,设圆C的半径为1,圆心在直线l上(1)若圆心C也在直线yx1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|2|MO|,求圆心C的横坐标a的取值范围解:(1)因为圆心在直线l:y2x4上,也在直线yx1上,所以解方程组得圆心C(3,2),又因为圆C的半径为1,所以圆C的方程为(x3)2(y2)21,又因为点A(0,3),显然过点A,圆C的切线的斜率存在,设所求的切线方程为ykx3,即kxy30,所以1,解得k0或k,所以所求切线方程为y3或yx3,即y30或3x4y120.(2)因为圆C的圆心在直线l:y2x4上,所以设圆心C为(a,2a4),又因为圆C的半径
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑方案设计找工作简历
- 国庆酒店充值活动方案策划
- 商场健康服务咨询方案
- 福建洁净车间施工方案
- 咨询方案策划
- 药厂企业安全培训课件
- 学校管理经验交流会校长发言:匪性、雅性、刚性、柔性
- 广州开业活动方案咨询
- 天心区营销方案设计
- 2025年英语四六级阅读理解真题模拟试卷:下半月备考攻略
- 2025年成人高考政治(专升本)考试题库
- 《LOGO标志设计》课件
- 设计经理招聘笔试题与参考答案(某大型央企)2024年
- 土方出土合同模板
- 水库周边绿化养护方案
- 井下皮带运输机事故专项应急预案
- 北师大版六年级数学上册《百分数的认识》教学设计
- 2023八年级数学上册 第七章 平行线的证明4 平行线的性质教案 (新版)北师大版
- NB-T32042-2018光伏发电工程建设监理规范
- 博士高校面试答辩模板
- 在线网课知道知慧《战舰与海战》单元测试答案
评论
0/150
提交评论