二用数学归纳法证明不等式_第1页
二用数学归纳法证明不等式_第2页
二用数学归纳法证明不等式_第3页
二用数学归纳法证明不等式_第4页
二用数学归纳法证明不等式_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

读教材填要点,贝努利(Bernoulli)不等式如果x是实数,且x1,x0,n为大于1的自然数,那么有(1x)n.,1nx,小问题大思维,在贝努利不等式中,指数n可以取任意实数吗?提示:可以但是贝努利不等式的体现形式有所变化事实上:当把正整数n改成实数后,将有以下几种情况出现:(1)当是实数,并且满足1或者1)(2)当是实数,并且满足01),精讲详析本题考查数学归纳法的应用,解答本题需要先对n取特值,猜想Pn与Qn的大小关系,然后利用数学归纳法证明(1)当n1,2时,PnQn.(2)当n3时,(以下再对x进行分类)若x(0,),显然有PnQn.若x0,则PnQn.,若x(1,0),则P3Q3x30,所以P3Q3.P4Q44x3x4x3(4x)0,所以P4Q4.假设Pk112,命题成立假设nk(k1,kN)时,3kk2成立,,则有3kk21.对nk1,3k133k3k23kk22(k21)3k21.(3k21)(k1)22k22k2k(k1)0,3k1(k1)2,对nk1,命题成立由上知,当t3时,对一切nN,命题都成立,(2012大纲全国卷)函数f(x)x22x3.定义数列xn如下:x12,xn1是过两点P(4,5)、Qn(xn,f(xn)的直线PQn与x轴交点的横坐标(1)证明:2xnxn13;(2)求数列xn的通项公式命题立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论