


免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
国际象棋的棋盘上共有8行8列,构成64个格子.国际象棋起源于古代印度,关于国际象棋有这样一个传说.,引入:,国王要奖赏国际象棋的发明者,问他有什么要求,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,在第2个格子里放上2颗麦粒,在第3个格子里放上4颗麦粒,在第4个格子里放上8颗麦粒,依此类推,每个格子里放的麦粒数都是前一个格子里放的麦粒的2倍,直到第64个格子,请给我足够的粮食来实现上述要求”.国王觉得这并不是很难办到的,就欣然同意了他的要求.,你认为国王有能力满足发明者上述要求吗?,让我们来分析一下:,由于每个格子里的麦粒数都是前一个格子里的麦粒数的2倍,且共有64个格子,各个格子里的麦粒数依次是,于是发明者要求的麦粒总数就是,等比数列的前n项和,目的要求,1.掌握等比数列的前n项和公式,2.掌握前n项和公式的推导方法.3.对前n项和公式能进行简单应用.,重点难点,重点:等比数列前n项和公式的推导与应用.难点:前n项和公式的推导思路的寻找.,复习,1.等比数列的定义,这些你都记得吗?,等比数列前n项和公式的推导,(一)用等比定理推导,当q=1时Sn=na1,因为,所以,或,Sn=a1+a2+a3+.+an-1+an,=a1+a1q+a1q2+.+a1qn-2+a1qn-1,=a1+q(a1+a1q+.+a1qn-3+a1qn-2),=a1+qSn-1=a1+q(Snan),(三)从(二)继续发散开有,Sn=a1+a1q+a1q2+a1qn-2+a1qn-1(*),qSn=a1q+a1q2+a1q3+a1qn(*),两式相减有(1q)Sn=a1a1qn,小结,上述几种求和的推导方式中第一种依赖的是定义特征及等比性质进行推导,第二种则是借助的和式的代数特征进行恒等变形而得,而第三种方法我们称之为错位相减法.由Sn.an,q,a1,n知三而可求二.,例题选讲:,例1.求等比数列1/2,1/4,1/8,的前n项和,分析:拆项后构成两个等比数列的和的问题,这样问题就变得容易解决了.,例2.求和,巩固练习,1.课本P1321.(2)(3)2.课本P1322,(1),(2)3.课本P1333(1).(2),课堂作业,Goo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景区专业单招试题及答案
- 烘焙专业试题及答案
- 河北省秦皇岛市海港区秦皇岛市实验中学2025-2026学年高二上学期开学生物试题(含答案)
- 福建省泉州市永春第一中学2025-2026学年高二上学期开学物理试题(含答案)
- 转专业试题及答案
- 墙体开洞补洞施工方案
- 马自达氛围灯施工方案
- 福建省泉州市2025-2026学年高三上学期质量监测(一)历史试题(含答案)
- 农机库房施工方案
- 城市规划行业工艺流程与实施标准
- 餐饮业价格合理性监管
- 2023年CSP-J组(入门组)初赛真题(文末附答案)
- 基层工会经费收支管理政策解读
- 特殊使用级抗菌药物申请表
- 道路运输企业安全生产标准化考评
- 眩晕的中医辨证治疗
- 危大工程专项方案验收记录表(基坑、模版、脚手架)
- 2023年公共科考试:社区治理真题模拟汇编(共142题)
- (完整word版)HND商务文化与策略
- 大学生创新创业(微课版第3版)课件 第1、2章 了解创业规划你的职业生涯、创新与创新思维
- 卡培他滨诱导手足综合征大鼠模型的建立及评价
评论
0/150
提交评论