三角形内切圆PPT课件_第1页
三角形内切圆PPT课件_第2页
三角形内切圆PPT课件_第3页
三角形内切圆PPT课件_第4页
三角形内切圆PPT课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-,1,是否现在的我们确实感觉艰累?既要承受种种外部的压力,更要面对自己内心的煎熬。在苦苦挣扎中,在题海中沐浴,窒息,作呕-是否如果有人向你投以理解的目光,会感到一种生命的暖意,或许仅有短暂的一瞥,就足以令你感奋不已。然而,快乐总有悲伤伴陪,雨过总会是晴天。坚持-成功越来越近Emmer,-,2,1、确定一个圆的位置与大小的条件是什么?,.圆心与半径,2、叙述角平分线的性质与判定,性质:角平分线上的点到这个角的两边的距离相等。判定:到这个角的两边距离相等的点在这个角的平分线上。,3、下图中ABC与圆O的关系?,ABC是圆O的内接三角形;圆O是ABC的外接圆圆心O点叫ABC的外心,知识回顾,或.不在同一直线上的三点,A,B,C,O,-,3,如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?,三角形的外接圆在实际中很有用,但还有用它不能解决的问题.如,-,4,三角形的内切圆,O,r,-,5,思考下列问题:,1如图,若O与ABC的两边相切,那么圆心O的位置有什么特点?,圆心0在ABC的平分线上。,2如图2,如果O与ABC的内角ABC的两边相切,且与内角ACB的两边也相切,那么此O的圆心在什么位置?,圆心0在BAC,ABC与ACB的三个角的角平分线的交点上。,O,M,A,B,C,N,探究:三角形内切圆的作法,-,6,作法:,A,B,C,1、作B、C的平分线BM和CN,交点为I。,I,2过点I作IDBC,垂足为D。,3以I为圆心,ID为半径作I.I就是所求的圆。,M,N,试一试:你能画出一个三角形的内切圆吗?,-,7,这样的圆可以作出几个?为什么?.,直线BE和CF只有一个交点I,并且点I到ABC三边的距离相等(为什么?),因此和ABC三边都相切的圆可以作出一个,并且只能作一个.,三角形与圆的位置关系,-,8,三角形与圆的位置关系,这圆叫做三角形的内切圆.这个三角形叫做圆的外切三角形.,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.,老李提示:多边形的边与圆的位置关系称为切.,-,9,定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。,1.三角形的内心到三角形各边的距离相等;,性质:,O,r,2.三角形的内心在三角形的角平分线上;,-,10,内心(三角形内切圆的圆心),三角形三边中垂线的交点,三角形三条角平分线的交点,(1)OA=OB=OC(2)外心不一定在三角形的内部,(1)到三边的距离相等;(2)OA、OB、OC分别平分BAC、ABC、ACB;(3)内心在三角形内部,外心(三角形外接圆的圆心),-,11,定义:和多边形各边都相切的圆叫做,这个多边形叫做。,多边形的内切圆,圆的外切多边形,内切,外切,如上图,四边形DEFG是O的四边形,O是四边形DEFG的圆,,思考:我们所学的平行四边形,矩形,菱形,正方形,等腰梯形中,哪些四边形一定有内切圆?,(菱形,正方形一定有内切圆),-,12,1.如图1,ABC是O的三角形。O是ABC的圆,点O叫ABC的,它是三角形的交点。,外接,内接,外心,三边中垂线,2.如图2,DEF是I的三角形,I是DEF的圆,点I是DEF的心,它是三角形的交点。,外切,内切,内,三条角平分线,3.三角形的内切圆能作_个,圆的外切三角形有_个,三角形的内心在三角形的_.,1,无数,内部,-,13,探讨1:(1)任意一个三角形一定有一个外接圆,并且只有一个外接圆.(2)任意一个圆一定有一个内接三角形,并且只有一个内接三角形.(3)任意一个三角形一定有一个内切圆,并且只有一个内切圆.(4)任意一个圆一定有一个外切三角形,并且只有一个外切三角形正确说法有_,(1),(3),-,14,明确,1.一个三角形有且只有一个内切圆;,2.一个圆有无数个外切三角形;,3.三角形的内心就是三角形三条内角平分线的交点;,4.三角形的内心到三角形三边的距离相等。,-,15,如图,在ABC中,A=68,点I是内心,求BIC的度数,问你:若点I是外心呢?,-,16,(2)若A=80,则BOC=度。(3)若BOC=100,则A=度。,解:,130,20,(1)点O是ABC的内心,,BOC=180(13),=180(2535),=120,同理3=4=ACB=70=35,1=2=ABC=50=25,-,17,理由:点O是ABC的内心,,13=(ABC+ACB),1=ABC,3=ACB,=180(90A),=(180A),=90+A,=90A,答:BOC=90+A,(4)试探索:A与BOC之间存在怎样的数量关系?请说明理由。,在OBC中,,BOC=180(13),-,18,例2ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.,解:,设AF=x(cm),BD=y(cm),CEz(cm),AF=4(cm),BD=5(cm),CE=9(cm).,O与ABC的三边都相切,AFAE,BDBF,CECD,-,19,已知:在ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。,A,B,C,F,D,E,x,x,13-x,13-x,9-x,9-x,(13-x)+(9-x)=14,解得x=4,AF=4,BD=9,CE=5,-,20,1.ABC的内切圆O与AB、BC、AC分别相切于点D、E、F,且AB5厘米,BC9厘米,AC6厘米,则AD=_,BE=_,CF=_.,1厘米,4厘米,5厘米,-,21,B,D,E,F,O,C,A,如图,ABC的内切圆的半径为r,ABC的周长为l,求ABC的面积S.,解:设ABC的内切圆与三边相切于D、E、F,,连结OA、OB、OC、OD、OE、OF,,则ODAB,OEBC,OFAC.,SABCSAOBSBOCSAOC,ABODBCOEACOF,lr,设ABC的三边为a、b、c,面积为S,则ABC的内切圆的半径r,结论,探究,三角形的内切圆的有关计算,-,22,A,B,C,E,D,F,O,如图,RtABC中,C90,BCa,ACb,ABc,O为RtABC的内切圆.求:RtABC的内切圆的半径r.,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,结论,-,23,A,B,C,E,D,F,O,如图,RtABC中,C90,BC3,AC4,O为RtABC的内切圆.(1)求RtABC的内切圆的半径.(2)若移动点O的位置,使O保持与ABC的边AC、BC都相切,求O的半径r的取值范围。,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:(1)设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,解得,r1,在RtABC中,BC3,AC4,AB5,由已知可得四边形ODCE为正方形,CDCEOD,RtABC的内切圆的半径为1。,-,24,(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。,A,B,O,D,C,OBBC3,半径r的取值范围为0r3,点评,几何问题代数化是解决几何问题的一种重要方法。,-,25,.,A,B,C,直角三角形的两直角边分别是5cm,12cm.则其内切圆的半径为_。,O,2cm,-,26,在ABC中,C=90,BC=3,AC=4.求这个三角形的外接圆半径和内切圆半径.,B,解:如图:由勾股定理可得:,O,外接圆半径R=2.5,由我们推导的三角形的面积公式可知:,解得:r=1,r,-,27,小结:三角形的内切圆(1)三角形的内心是三角形内切圆的圆心(2)三角形的内心是三角形各角平分线的交点(3)三角形内心到三边的距离相等(4)三角形面积(C为三角形周长,r为内切圆半径),(5)直角三角形的内切圆的半径为r与各边长a、b、c的关系是,-,28,2、菱形ABCD中,周长为40,ABC=120,则内切圆的半径为(),(A)(B)(C)(D),3、如图,O是ABC的内切圆,D、E、F是切点,A=50,C=60,则DOE=(),(A)70(B)110(C)120(D)130,(A)梯形(B)菱形(C)矩形(D)平行四边形,1、下列图形中,一定有内切圆的四边形是(),B,B,-,29,4、等边三角形的内切圆半径、外接圆的半径和高的比为(),(A)1(B)12(C)12(D)1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论