食品工程原理第一章第一节_第1页
食品工程原理第一章第一节_第2页
食品工程原理第一章第一节_第3页
食品工程原理第一章第一节_第4页
食品工程原理第一章第一节_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章流体流动,第一章流体流动,内容提要流体静力学流体在管内的流动流体的流动现象流动阻力管路计算,要求掌握连续性方程和能量方程能进行管路计算,流体的特征:具有流动性。即抗剪和抗张的能力很小;无固定形状,随容器的形状而变化;在外力作用下其内部发生相对运动。,流体:在剪应力作用下能产生连续变形的物体,如气体和液体。常视为彼此间没有任何空隙的无数质点所组成的连续介质,主要研究宏观规律。,流体的输送:根据生产要求,往往要将这些流体按照生产程序从一个设备输送到另一个设备,从而完成流体输送的任务,实现生产的连续化。,压强、流速和流量的测量:以便更好的掌握生产状况。,为强化设备提供适宜的流动条件:生产中的传热、传质过程以及化学反应大都是在流体流动下进行的,以便降低传递阻力,减小设备尺寸。流体流动状态对这些单元操作有较大影响。,流体的研究意义,流体静力学是研究流体在外力作用下达到平衡的规律。,作用在流体上的力有质量力和表面力。,质量力:作用于流体每个质点上的力,与流体的质量成正比,如:重力和离心力。,表面力:作用于流体质点表面的力,其大小与表面积成正比,如:压力和剪力。,第一节流体静力学,单位体积流体的质量,称为流体的密度,其表达式为,不同的流体密度是不同的,对一定的流体,密度是压力p和温度T的函数,可用下式表示:f(p,T)(1-2),1-1流体的物理特性1.1密度,液体的密度随压力的变化甚小(极高压力下除外),可忽略不计,但其随温度稍有改变。气体的密度随压力和温度的变化较大。,当压力不太高、温度不太低时,气体的密度可近似地按理想气体状态方程式计算:,上式中的0M/22.4kg/m3为标准状态(即T0=273K及p0=133.3Pa)下气体的密度。,在气体压力较高、温度较低时,气体的密度需要采用真实气体状态方程式计算。,气体混合物:当气体混合物的温度、压力接近理想气体时,仍可用式(1-3)计算气体的密度。,气体混合物的组成通常以体积分率表示。对于理想气体,体积分率与摩尔分率、压力分率是相等的。,MmMy1+M2y2+Mnyn(1-6)式中:M、M2、Mn气体混合物各组分的分子量;y1、y2、yn气体混合物各组分的摩尔分率。,液体混合物:液体混合时,体积往往有所改变。若混合前后体积不变,则1kg混合液的体积等于各组分单独存在时的体积之和,则可由下式求出混合液体的密度m。,式中1、2、,n液体混合物中各组分的质量分率;1、2、,n液体混合物中各组分的密度,kg/m3;m液体混合物的平均密度,kg/m3。,垂直作用于流体单位面积上的力,称为流体的压强,简称压强。习惯上称为压力。作用于整个面上的力称为总压力。,在静止流体中,从各方向作用于某一点的压力大小均相等。,压力的单位:帕斯卡,Pa,N/m2(法定单位);标准大气压,atm;某流体在柱高度;bar(巴)或kgf/cm2等。,1.2压力,压力可以有不同的计量基准。,绝对压力(absolutepressure):以绝对真空(即零大气压)为基准。,表压(gaugepressure):以当地大气压为基准。它与绝对压力的关系,可用下式表示:表压绝对压力大气压力,真空度(vacuum):当被测流体的绝对压力小于大气压时,其低于大气压的数值,即:真空度大气压力绝对压力,注意:此处的大气压力均应指当地大气压。在本章中如不加说明时均可按标准大气压计算。,1-2流体静力学基本方程式,在垂直方向上作用于液柱的力有:下底面所受之向上总压力为p2A;上底面所受之向下总压力为p1A;整个液柱之重力GgA(Z1-Z2)。,现从静止液体中任意划出一垂直液柱,如图所示。液柱的横截面积为A,液体密度为,若以容器器底为基准水平面,则液柱的上、下底面与基准水平面的垂直距离分别为Z1和Z2,以p1与p2分别表示高度为Z1及Z2处的压力。,上两式即为液体静力学基本方程式.,p2p1g(Z1-Z2),由上式可知:,当液面上方的压力一定时,在静止液体内任一点压力的大小,与液体本身的密度和该点距液面的深度有关。因此,在静止的、连续的同一液体内,处于同一水平面上的各点的压力都相等。此压力相等的水平面,称为等压面。,当液面的上方压力p0有变化时,必将引起液体内部各点压力发生同样大小的变化。,p2p0gh可改写为,由上式可知,压力或压力差的大小可用液柱高度表示。,静力学基本方程式中各项的意义:,将p2p1g(Z1-Z2)两边除以g并加以整理可得:,位压头(potentialtentialhead):,静压头(statichead):式中的第二项p/g称为静压头,又称为单位质量流体的静压能(pressureenergy)。,第一项Z为流体距基准面的高度,称为位压头。若把重量mg的流体从基准面移到高度Z后,该流体所具有的位能为mgZ。单位质量流体的位能,则为mgz/mg=z。即上式中Z(位压头)是表示单位重量的流体从基准面算起的位能(potentialenergy)。,如图所示:密闭容器,内盛有液体,液面上方压力为p。,静压头的意义:,说明Z1处的液体对于大气压力来说,具有上升一定高度的能力。,静压力位压头常数,也可将上述方程各项均乘以g,可得,注:指示剂的选择,指示液密度0,被测流体密度为,图中a、b两点的压力是相等的,因为这两点都在同一种静止液体(指示液)的同一水平面上。通过这个关系,便可求出p1p2的值。,二、运用1、压力测量(1)U型管液柱压差计(U-tubemanometer),papb,p1p2R(0)g,测量气体时,由于气体的密度比指示液的密度0小得多,故00,上式可简化为p1p2R0g,下图所示是倒U型管压差计。该压差计是利用被测量液体本身作为指示液的。压力差p1p2可根据液柱高度差R进行计算。,说明:图中平衡器的小室2中所装的液体与容器里的液体相同。平衡器里的液面高度维持在容器液面容许到达的最大高度处。容器里的液面高度可根据压差计的读数R求得。液面越高,读数越小。当液面达到最大高度时,压差计的读数为零。,1容器;2平衡器的小室;3U形管压差计,2、液面测定,为了安全起见,实际安装时管子插入液面下的深度应比上式计算值略低。,作用:控制设备内气压不超过规定的数值,当设备内压力超过规定值时,气体就从液封管排出,以确保设备操作的安全。,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论