




已阅读5页,还剩87页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章流体的P-V-T关系,2.1纯物质的P-V-T关系,1,2,3,C,固相,气相,液相,密流区,一.P-T图,1-2线汽固平衡线(升华线),2-c线汽液平衡线(汽化线),2-3线液固平衡线(熔化线),C点临界点,2点三相点,PTc的区域,密流区具有液体和气体的双重性质,密度同液体,溶解度大;粘度同气体,扩散系数大。,A,B,二.P-V图,V,P,T1,T2,T3,Tc,T4,T5,汽液两相区,气,液,汽,特性:,汽液两相区的比容差随温度和压力的上升而减少,外延至V=0点,可求得Pc,Vc和Tc.,在单相区,等温线为光滑的曲线或直线;高于Tc的的等温线光滑,无转折点,低于Tc的的等温线有折点,由三部分组成。,临界点处,等温线既是极值点又是拐点,C,三.P-V-T关系,在单相区f(P,V,T)=0隐函数显函数V=V(P,T)P=P(V,T)T=T(P,V),全微分方程:,容积膨胀系数,等温压缩系数,当温度和压力变化不大时,流体的容积膨胀系数和等温压缩系数可以看作常数,则有,2.2气体的状态方程,对1mol物质f(P,V,T)=0对nmol物质f(P,V,T,n)=0理想气体状态方程(IdealGasEOS)PV=RT(1mol)在恒T下PV=const.ActualGas在恒T下PV=const.?答案:PVconst.,300多种EOS,一.维里方程(VirialEquation),(1901年,荷兰Leiden大学Onness)由图2-3知,气相区,等温线近似于双曲线,当P时,V1.方程的提出,Onness提出:PV=a+bP+cP2+dP3+.,令式中b=aBc=aCd=aD上式:PV=a(1+BP+CP2+DP3+.)式中:a,B,C,D皆是T和物质的函数当p0时,真实气体的行为理想气体的行为IdealGas(1)分子间作用力小(2)分子本身体积小,由维里方程式,当P0时,PV=a由idealgasEOS,PV=RT,由上述两个方程即可求出维里方程式中的a=RTPV=RT(1+BP+CP2+DP3+)Z=pV/RT=1+BP+CP2+DP3+压力形式Z=pV/RT=1+B/V+C/V2+D/V3+体积形式,维里系数f(物质,温度)理论基础:统计热力学,B、B第二维里系数,它表示对于一定量的真实气体,两个气体分子间作用所引起的真实气体与理想气体的偏差。C、C第三维里系数,它表示对于一定量的真实气体,两个气体分子间作用所引起的真实气体与理想气体的偏差。D、D,注意:BBCCDD,(近似式),2.两项维里方程,维里方程式中,保留前两项,忽略掉第三项之后的所有项,得到:Z=PV/RT=1+BPZ=PV/RT=1+B/V把这个式子代入用压力表示的两项维里方程中,就得到常用的两项维里方程。即:,3.应用范围与条件:,(1)用于气相PVT性质计算,对液相不能使用;(2)TTc,P1.5MPa,用两项维里方程计算,满足工程需要;(3)TTc,1.5MPaP5MPa,用三项维里方程计算,满足工程需要;(4)高压、精确度要求高,可视情况,多取几项根据状态方程式的形式、结构进行分类可分为两类:立方型:具有两个常数的EOS精细型:多常数的EOS,二.立方型(两常数)EOS,1.VDWEquation(1873)形式:,a/V2分子引力修正项。,由于分子相互吸引力存在,分子撞击器壁的力减小,造成压力减小。压力减小的数值与撞击器壁的分子成正比;与吸引其分子数成正比,即与气体比容的平方成反比。,b体积校正项。,分子本身占有体积,分子自由活动空间减小由V变成V-b。,在临界点处,实际气体的等温线,将范德华方程整理后得到:P(V-b)V2=RTV2-a(V-b)PV3-(bP+RT)V2+aV+ab=0由这个方程可以看出,当温度不变时,是一个关于V的三次方程,其解有三种情况:,三个不等的实根。三个相等的实根一个实根,两个虚根,PLDHV,R-KEquation(1949年,RedlichandKwong),(1)R-KEq的一般形式:,R-KEquation中常数值不同于范德华方程中的a、b值,不能将二者混淆。在范德华方程中,修正项为a/V2,没有考虑温度的影响在R-K方程中,修正项为,考虑了温度的影响。R-KEquation中常数a、b值是物性常数,具有单位。,(2-6),(2)便于计算机应用的形式,式中A=ap/R2T2.5B=bp/RT,迭代法,先给,yes,No,(3)R-KEq的应用范围,适用于气体pVT性质计算非极性、弱极性物质误差在2左右,对于强极性物质误差达1020。,3.RKS或SRKEq(1972年,Sove),形式,R-KEq中af(物性)SRKEq中af(物性,T),(2-8),R-KEq经过修改后,应用范围扩宽。SRKEq:可用于两相PVT性质的计算,对烃类计算,其精确度很高。关于两常数(立方型)状态方程,除了我们介绍的范德华、RK、SRKEq以外,还有许多方程,包括我们讲义上的PREq和P-TEqPREq式(2-10)P-TEq式(2-12),(四)应用举例,1.试差法解题,试差法:,假定v值方程左边方程右边判断,小,v=30cm3/mol,710.2549,156.6776,大,v=50cm3/mol,97.8976,125.8908,v=40cm3/mol172.0770136.6268小,v=44cm3/mol,v=44.0705131.5139131.5267稍大已接近,v=44.0686131.5284131.5288,由此可计算出v=44.0686cm3/mol,通过作图得出结果,若令y1=方程左边f1(v)y2=方程右边f2(v),2.迭代法:,假设:,Z(0)=2h(0)=0.59795Z(1)=1.9076,Z(0),Z(0)=1.9076h(1)=0.62691Z(2)=2.0834,Z(0),Z(0)=2.0834h(2)=0.57401Z(3)=1.7826,Z(0),如果按直接赋值迭代不收敛,发散,考虑用,Z(0)=1.9538h(1)=0.61209Z(2)=1.9898,Z(0)=1.9714h(1)=0.60662Z(3)=1.957,Z(0)=1.9665h(1)=0.60814Z(7)=1.9661,h,Z,Z(0),h(0),(1),(2),3.注意点,(1)单位要一致,且采用国际单位制;(2)R的取值取决于PVT的单位.0.08205m3atm/kmolK,latm/molK1.987cal/molK,kcal/kmolK8314m3Pa/kmolK(J/kmolK)8.314J/molK(kJ/kmolK),三.多常数状态方程,(一).BWREq1.方程的形式P13式(2-34)式中B0、A0、C0、a、b、c、8个常数运用BWREq时,首先要确定式中的8个常数,至少要有8组数据,才能确定出8个常数。2.应用范围(1)可用于气相、液相PVT性质的计算。(2)计算烃类及其混合物的效果好。,(二)M-H.Eq,1.通式,(2-32),其中k=5.475,M-H.Eq:55型和88型,2.55型,由上面的通式可见,方程中的常数为:,有9个常数,但只需两组数据就可以得到,一组是临界值,另一组是某一温度下的蒸汽压,在55型方程的基础上增加了常数,这样就得到了我们讲义P12式(2-33),此式称为81型-方程。,3.81型,4.优缺点,优点:计算精度高,误差:气相,液相2用普维法,直接计算Vr2用普压法,迭代计算,精度三参数普遍化关系是能够很好的满足工程需要,一般对于非极性和弱极性物质,误差3;强极性物质,误差达510。,3.应用举例,P1719例(2325)计算时注意:当V2时,由T,V得到P。用两项维里方程,书中的例题要认真的看看要注意计算思路计算原则计算方法,EOSirialV-D-WR-kS-R-kB-W-RM-H,普遍化关系式法普遍化两参数普遍化关系式三参数普遍化关系式普压法普维法,2.4真实气体混合物的PTV关系,真实气体混合物的非理想性,可看成是由两方面的原因造成的纯气体的非理想性混合作用所引起的非理想性真实气体混合物PTV性质的计算方法与纯气体的计算方法是相同的,也有两种EOS普遍化方法但是由于混合物组分数的增加,使它的计算又具有特殊性。,对纯组分气体PVZRT对混合物气体PVZmRT,虚拟临界常数法道尔顿定律Z图阿玛格定律Z图三参数普遍化关系式法,常用的方法有:,一.普遍化关系式,1.虚拟临界常数法,该法是由W.B.Kay提出,其主题思想是人为地把混合物看作是一种纯物质,世界上的纯物质都具有相应的临界点_客观事实把混合物看作是一种纯物质,混合物的临界常数是通过一些混合规则将混合物中各组分的临界参数联系在一起_主观上,虚拟临界常数,这种方法就称为虚拟临界常数法,Kay规则:,Tpc=y1TC1+y2TC2+=yiTCiPpc=y1PC1+y2PC2+=yiPCi虚拟对比参数:Tpr=T/TpcPpr=P/Ppc以下就可以按纯组分气体PTV性质的计算方法进行计算。,具体计算过程是:,2.道尔顿定律Z图,(1)要点:P=Pi=ZmnRT/vPi=ZiniRT/vZm=yiZ,式中:Pi组分i在混合物T,V的压力,纯组分i的压力Zi组分i的压缩因子,由Pi,T混决定yi组分i的mol分率,yi=ni/n,道尔顿定律关键在于组分压缩因子的计算,而组分压缩因子的计算关键又在于P的计算,注意点:,Zi是由Tri,Pri查两参数压缩因子图得来的。,Pi是纯组分的压力,不能称为分压。,对理想气体混合物分压力,对真实气体混合物纯组分的分压力,Pi的计算要用试差法或迭代法,不管是求PTV性质中的那个参数,纯组分i的压力Pi都是未知的,因而必须采用特殊的数学手段进行求取.,根据混先假设,PiT,查算,Zi,ZmyiZi,Zm,V=ZmnRT/P,V,Pi=ZiniRT/V,Pi1,Pi1Pi0,计算思路,3.阿玛格定律Z图,三要点:V=ViVi=ZiniRT/PZm=yiZi注意以下两点:Zi是由Tri,Pri查两参数压缩因子图得到的。与道尔顿定律的区别,主要表现在Zi的求取不同。,Zi的求取,道尔顿定律:Zi是由Pi,T混决定的,一般要试差或迭代,可用于低于5Mpa以下的体系。阿玛格定律:Zi是由P混,T混决定的,不需要试差或迭代,可用于高压体系30MPa以上。,4.三参数普遍化关系式法,Pitzer提出的三参数普遍化关系式Zf(Tr,Pr,)(1)普压法纯组分气体计算式Z=Z0+Z1(238)对于混合物Zm=Z0+mZ1式中:Z0,Z1,皆是混合物的对应参数值Z0f1(Tr,Pr),Z1=f2(Tr,Pr)仍是对比参数的函数,但对比参数是虚拟对比参数,因而要首先计算虚拟临界值。,Tpr=T/TpcPpr=P/Ppc,TpcyiTcim=yiiPpc=yiPci,求虚拟对比参数,计算出虚拟对比参数后,即可按纯气体的计算方法查图计算,但要注意用这种方法的条件是虚拟对比参数(Tr,Pr)点应落在图29曲线的下方。,二.EOS法,1.维里方程(1)混合物的维里方程与组成间的关系对单组分气体ZBP/RT(2-28b)对气体混合物ZmBmPRT式中:Zm气体混合物的压缩因子Bm混合物的第二维里系数,表示所有可能的双分子效应的加和。,混合物的第二维里系数即包含有相同分子间的相互作用,又包含有异分子之间的相互作用。,统计热力学混合物中各组份的组成与维里系数之间存在有这样的对应关系,式中:,组分,yi,yj组分的摩尔分率Bij第二维里系数,当时,纯组分的第二维里系数;当时,交叉维里系数,实质上,BijBji。,如:对于二元混合物,混合物的第二维里系数Bm=y1y1B11+y1y2B12+y2y1B21+y2y2B22将所有可能双分子间的相互作用加起来,并注意到B12B21Bm=y12B11+2y1y2B12+y22B22(251)式中:B11,B22纯组分维里系数(文献或手册可查)B12,B21交叉维里系数(文献或手册没有,要计算),(2)交叉维里系数的计算,对纯组分气体,对于混合物气体,当ij时,表明是纯组分的维里系数,可查手册,文献或计算。,当时ij,表明是交叉维里系数,利用此式计算时,涉及到Pcij,Tcij,Bij0,ij,Bij1,如何计算这些参数呢?,美国Prausnity提出交叉维里系数计算方法,Prausnity认为:Bij0,Bij1均是有(244,44)计算,此式中TrijT/Tcij若i=j,则Tcij为纯组分的临界常数,可直接查表得到。,若ij,Pcij,Tcij,ij由Prausnity提出的经验式进行计算,亦即讲义P21式(253)(257)五个式子计算。,(3)混合物的两项维里方程,对纯组分气体:,对气体混合物:,一般计算步骤:,查找出纯组分临界值,TciPciVciZcii,式(2-53)(2-57),TcijPcijij,式(2-52),Bij,式(2-50)或式(251),Bm,Zm,PVT,式(2-44a,44b),B0ijB1ij,(4)应用举例,(P21例26)自看注意点:要检验此法的适用性,检验方法是用虚拟对比参数查图29进行检验。,PPcTPc,T,P,PPrTPr,图2-9曲线上方,即可行,2.混合物的RK方程,(26)一般形式,(222)特殊形式,(1)R-K方程中常数a,b的计算,当R-K方程用于混合物时,只要把RK中的参数a,b用混合物a,b来代替,即可计算,混合物RK参数为:,(259),(258),在这里用于混
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- project考试试题及答案
- 电缆厂检验知识培训课件
- 电煤知识培训内容摘要模板课件
- 本科线性代数考试题目及答案
- 高热惊厥科普课件
- Nicomol-Standard-生命科学试剂-MCE
- Acedapsone-d8-生命科学试剂-MCE
- MEDI-8852-生命科学试剂-MCE
- 保险学第七版考试题库及答案
- 专升本考试题目及答案
- 2025小学道德与法治教材更新心得体会
- 科研团队经费管理制度
- 从“制作”与“生生”隐喻原型洞察中国哲学的思维根基与演进脉络
- 社区安全用药课件
- 河南卷2025年高考物理真题含解析
- QGDW1512-2014电力电缆及通道运维规程
- 2025年心理咨询师认证考试试题及答案
- 消防水系统维保维修常见故障及维修办法
- 总承包方案(3篇)
- 医院教学总结汇报
- 预防艾梅乙母婴传播
评论
0/150
提交评论