高中数学y=Asinωxφ题型分析与求解课件新人教B必修4_第1页
高中数学y=Asinωxφ题型分析与求解课件新人教B必修4_第2页
高中数学y=Asinωxφ题型分析与求解课件新人教B必修4_第3页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

y=Asin(x+)题型分析与求解,复习,1.y=Asinx(A0,A1)的图象,可把正弦曲线上所有的点的_坐标_(A1)或_(0A1)到原来的_倍而得到,2.y=sinx(0,1)的图象,可以把正弦曲线上所有的点的_坐标_(1)或_(01)到原来的_倍而得到,3.y=sin(x+)(0)的图象,可以把正弦曲线上所有的点向_(0)或向_(0)平行移动_而得到,4.y=sinx+k(k0)的图象,可以把正弦曲线上所有的点向_(k0)或向_(k0)平行移动_而得到,题型一.变换过程的求解,1.已知函数y=3sin(x+)xR的图象为C(1)为了得到函数y=3sin(x-)图象只需把C上所有的点()(A)向左平移个单位;(B)向右平移个单位;(C)向左平移个单位;(D)向右平移个单位;,D,(2)为了得到函数y=3sin(2x+)图象只需把C上所有的点()A.横坐标伸长原来的2倍,纵坐标不变B.横坐标缩短原来的倍,纵坐标不变C.纵坐标伸长原来的2倍,横坐标不变D.纵坐标缩短原来的倍,横坐标不变,B,C,(3)为了得到函数y=4sin(x+)图象只需把C上所有的点()A.横坐标伸长原来的倍,纵坐标不变B.横坐标缩短原来的倍,纵坐标不变C.纵坐标伸长原来的倍,横坐标不变D.纵坐标缩短原来的倍,横坐标不变,2.要得的图象,只需将y=sin(-2x)的图象(),D,(3)y=cos(3x+),3.不画简图,说明这些函数的图象可由正弦曲线经过怎样的变化得出:,(1)y=8sin(2x+),(2)y=sin(x-),由y=sinx的图象经过怎样的变换得到y=Asin(x+)的图象?,1.先平移、再周期、后振幅变换,2.先周期、再平移、后振幅变换,3.先平移不理,后平移钻底,C,1.若将y=sinx的图象向左平移,所有点横坐标扩大为原来的2倍所的图象解析式为(),题型二.起始函数或目标函数的求解,2.若将某函数的图象向右平移以后所得到的图象的函数式是ysin(x),则原来的函数表达式为(),A.ysin(x)B.ysin(x)C.ysin(x)D.ysin(x),A,3.若函数y=sin(2x+)的图象向左平移所得图象与ysin2x重合,则可以是(),C,1.已知函数yAsin(x),在同一周期内,当x时函数取得最大值2,当x时函数取得最小值2,则该函数的解析式为()A.y2sin(3x)B.y2sin(3x)C.y2sin()D.y2sin(),B,题型三.已知图像求解析式,D,1,x,y,图像如下,求解析式,3.,4.下图是函数的图象(1)求的值;(2)求函数图象的对称轴方程.(3)求函数增区间,5,小结:先确定A,T(w),再用特殊点求注意:A,w,的范围限制求时最好用最值,或,1.函数y=5sin(2x+)的图象关于y轴对称,则=()(A)2k+(kZ)(B)2k+(kZ)(C)k+(kZ)(D)k+(kZ),C,题型四.求y=Asin(x+)图像的相关性质,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论