

免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届高三数学(理)“大题精练”917在平面四边形中,.(1)若的面积为,求;(2)若,求.18如图,等腰梯形中,为中点,以为折痕把折起,使点到达点的位置(平面).()证明:;()若直线与平面所成的角为,求二面角的余弦值.19为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.(1)已知在被抽取的学生中高一班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;(2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一班和高一班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.班级一一一一一一一一一一市级比赛获奖人数2233443342市级以上比赛获奖人数221023321220在平面直角坐标系中,已知过点的直线与椭圆交于不同的两点,其中.(1)若,求的面积;(2)在x轴上是否存在定点T,使得直线TA、TB与y轴围成的三角形始终为等腰三角形.21已知实数,设函数(1)求函数的单调区间;(2)当时,若对任意的,均有,求的取值范围注:为自然对数的底数22在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,若极坐标系内异于的三点,都在曲线上.(1)求证:;(2)若过,两点直线的参数方程为(为参数),求四边形的面积.23已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.2020届高三数学(理)“大题精练”9(答案解析)17在平面四边形中,.(1)若的面积为,求;(2)若,求.【解】(1)在中,因为,所以,解得:.在中,由余弦定理得:所以(2)设,则如图,在中,因为,所以在中,由正弦定理,得,即所以所以,即所以,即18如图,等腰梯形中,为中点,以为折痕把折起,使点到达点的位置(平面).()证明:;()若直线与平面所成的角为,求二面角的余弦值.【解】(I)证明:在等腰梯形ABCD中,连接BD,交AE于点O,AB|CE,AB=CE,四边形ABCE为平行四边形,AE=BC=AD=DE,ADE为等边三角形,在等腰梯形ABCD中,,在等腰中,,即BDBC,BDAE,翻折后可得:OPAE,OBAE,又, ;(II)解:在平面POB内作PQOB,垂足为Q,因为AE平面POB,AEPQ,因为OB平面ABCE, AE平面ABCE,AEOB=OPQ平面ABCE,直线PB与平面ABCE夹角为,又因为OP=OB,OPOB,O、Q两点重合,即OP平面ABCE,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,由题意得,各点坐标为,设平面PCE的一个法向量为,则设,则y=-1,z=1,由题意得平面PAE的一个法向量,设二面角A-EP-C为,.易知二面角A-EP-C为钝角,所以.19为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.(1)已知在被抽取的学生中高一班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;(2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一班和高一班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.班级一一一一一一一一一一市级比赛获奖人数2233443342市级以上比赛获奖人数2210233212【解】(1)记事件从6名学生抽取的3人中恰好有i人有兴趣,1,2,;则与互斥,故所求概率为 ; (2)由题意知,随机变量的所有可能取值有0,1,2,3; 则的分布列为:0123p数学期望为20在平面直角坐标系中,已知过点的直线与椭圆交于不同的两点,其中.(1)若,求的面积;(2)在x轴上是否存在定点T,使得直线TA、TB与y轴围成的三角形始终为等腰三角形.【解】(1)当时,代入椭圆方程可得点坐标为或 若点坐标为,此时直线l:联立,消x整理可得解得或,故B所以的面积为 ,由对称性知的面积也是,综上可知,当时,的面积为. (2)显然直线l的斜率不为0,设直线l: 联立,消去x整理得 由,得则, , 因为直线TA、TB与y轴围成的三角形始终为等腰三角形,所以 设,则, 即,解得.故x轴上存在定点,使得直线TA、TB与y轴围成的三角形始终为等腰三角形21已知实数,设函数(1)求函数的单调区间;(2)当时,若对任意的,均有,求的取值范围注:为自然对数的底数【解】(1)由,解得若,则当时,故在内单调递增;当时,故在内单调递减若,则当时,故在内单调递增;当时,故在内单调递减综上所述,在内单调递减,在内单调递增(2),即令,得,则当时,不等式显然成立,当时,两边取对数,即恒成立令函数,即在内恒成立由,得故当时,单调递增;当时,单调递减.因此令函数,其中,则,得,故当时,单调递减;当时,单调递增又,故当时,恒成立,因此恒成立,即当时,对任意的,均有成立22在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,若极坐标系内异于的三点,都在曲线上.(1)求证:;(2)若过,两点直线的参数方程为(为参数),求四边形的面积.【解】(1)由 ,则 ;(2)由曲线的普通方程为:,联立直线的参数方程得:解得;平面直角坐标为:则;又得.即四边形面积为为所求.23已知函数.(1)求不等式的解集;(2)若对任意恒成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第5课 做一次电影市场分析说课稿-2025-2026学年初中信息技术粤高教版2018七年级下册-粤高教版2018
- 2025商业合作合同书范本
- 2025企业违约、强制解雇、裁员均触犯合同法规定
- 2025二手简单装修购房合同书
- 2024-2025学年高中历史 第四单元 王安石变法 第2课 王安石变法的主要内容(2)教学说课稿 新人教版选修1
- 4.2 设计制作用集成电路制作收音机说课稿-2025-2026学年高中物理上海科教版选修2-1-沪教版2007
- 绍兴事业单位笔试真题2025
- 2025【合同范本】建筑材料采购合同范本
- 2025退休人员劳务合同模板
- 2025博骜丽景春天项目商品房销售代理合同
- 监护仪使用及报警设置
- 中药饮片处方用名和调剂给付规定
- 公共部门人力资源管理全套PPT完整教学课件
- 吉林大学地质学兴城实习报告
- 中学生必需把握的3500个常用汉字
- 通过模拟实验探究膜的透性 说课课件
- 化工自动化控制仪表作业安全操作资格培训教材课件
- 造纸培训制浆造纸培训造纸纸病分析处理(“毛布”文档)共112张
- DB37-T 4457-2021企业开办工作指引
- 中科大中级有机化学实验讲义
- 干部任免审批表(空白)【电子版】
评论
0/150
提交评论