相关资料.doc

【机械类毕业论文中英文对照文献翻译】机械设计-新型搅拌机

收藏

资源目录
跳过导航链接。
【机械类毕业论文中英文对照文献翻译】机械设计-新型搅拌机.rar
【机械类毕业论文中英文对照文献翻译】机械设计-新型搅拌机
压缩包内文档预览:(预览前20页/共21页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:77691334    类型:共享资源    大小:35.14KB    格式:RAR    上传时间:2020-05-07 上传人:柒哥 IP属地:湖南
6
积分
关 键 词:
机械类毕业论文中英文对照文献翻译 机械类 毕业论文 中英文 对照 文献 翻译 机械设计 新型 搅拌机
资源描述:
【机械类毕业论文中英文对照文献翻译】机械设计-新型搅拌机,机械类毕业论文中英文对照文献翻译,机械类,毕业论文,中英文,对照,文献,翻译,机械设计,新型,搅拌机
内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 工业废水处理厂絮凝搅拌机的设计 信机 系 机械工程及自动化专业学 号: 0923271学生姓名: 夏栋洁 指导教师: 范圣耀(职称:副教授) (职称: ) 2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 工业废水处理厂絮凝搅拌机的设计 信机 系 机械工程及自动化 专业学 号: 0923271 学生姓名: 夏栋洁 指导教师: 范圣耀 (职称:副教授) (职称: )2013年5月25日 课题来源本次课题题目是工业废水处理厂絮凝搅拌机的设计,课题来源于无锡市某搅拌设备有限公司,其研究的内容是搅拌设备、釜用搅拌传动装置的设计、制造和研究开发。课题研究内容包括机械工程学科的力学,材料学,机械原理,机械设计,公差与互换性,机械制造工艺等知识,特别锻炼学生规范性设计的能力。使学生能得到全面的锻炼。课题要求学生具备较强的机构设计能力和创新能力,对学生是一个挑战。课题为典型的机械设计类课题,涉及机械知识全面,与工程机械专业方向结合紧密。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义城市污水处理能力增长缓慢和污水处理率低是造成我国水环境污染的主要原因,由此导致了水环境的持续恶化,并严重的制约了我国经济与社会的发展。搅拌机的设计在废水处理中占有举足轻重的地位,从而搅拌技术成为世界学术界研究的热点。废水处理中反应搅拌机是由电机作为驱动装置,经减速器联轴器带到直桨叶旋转使胶体颗粒絮凝形成较大的颗粒,以利沉淀,以满足水处理中水质净化的要求。(2)絮凝搅拌机的研究状况及其发展前景国产污水处理设备的生产始于20世纪70年代中后期,当时产品的标准化、成套化、系列化水平很低,定型产品较少。进人20世纪90年代以来,国家有关部门先后对主要污水处理设备制造企业进行了技术改造,提高了制造能力和制造水平,城市污水处理专用设备和与之配套的通用设备的生产水平都有了很大提高。搅拌机的操作性能直接关系到产品的质量、能耗和生产成本,工程界和学术界对搅拌混合都非常重视,进行了大量的研究工作,取得了不少的研究成果。搅拌器是化学工程和生物工程中最常见也是最重要的单元设备之一。目前,搅拌器的选型和内构件的设计在很大程度上依赖试验和经验,对放大规模还缺乏深入的认识,对于能耗和生产成本只能在一定规模的生产装置上对比后才能得出结论,由于对产品的回收率和质量要求越来越高,对搅拌器的研究日趋深入,已从早期对搅拌功率和混合时间的研究,20世纪80年代对反应釜内的流体速度场分布的研究,进入20世纪90年代以来的搅拌釜内三维流场的数值模拟研究。流场数值模拟必须在深入进行流体力学研究的基础上,综合考虑流体流动的三维性、随机性、非线性和边界条件不确定性。通过数值模拟不但可以解决反应器的放大机理,而且可以优化设计开发新型高效搅拌器,使机械搅拌器的设计理论更加完善。研究内容本课题研究的是废水处理厂絮凝搅拌机设计,要求其材料45#钢,采用大批量生产。通过合理的设计桨叶、絮凝池,选择合理的减速机,制造出符合要求的制件。 查阅有关搅拌机设计方面的资料,翻译与搅拌机设计相关的英文文献; 对搅拌机进行工艺分析,选择合理的设计方案; 进行必要的参数计算,确定出正确的设计参数; 在计算正确的基础上设计絮凝搅拌机; 撰写出一份与自己设计相配套的设计说明书。拟采取的研究方法、技术路线、实验方案及可行性分析(1)研究方法 仔细阅读设计任务书,并且查找相关书籍; 根据给定的原始数据进行设计计算; 根据计算结果,选择合理的设计方案; 绘制絮凝搅拌机装配图及主要零件图; 编写设计说明书。(2)可行性分析 通过在校期间学习的相关课程,以及在网上和图书馆查阅相关资料,另外在老师的指导下,我相信一定可以完成絮凝搅拌机传动装置的设计。研究计划及预期成果研究计划:2012年10月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:絮凝搅拌机设计。2013年4月12日-2013年4月25日:绘制搅拌机的装配图以及零件图。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:1. 完成絮凝搅拌机装配图 1张; 2. 完成絮凝池土建图1张; 3. 完成桨叶、机座、水下轴承部件图各 1张;4. 完成主轴零件图1张;5. 设计说明书不少于1.5万字,并打印说明书; 6. 翻译8000以上外文印刷字符或译出约5000左右汉字的有关技术资料或专业文献,内容要尽量结合课题特色或创新之处 使用UG仿真,效果明显。 采用固定某些参量、改变某些参量来研究问题的方法,思路清晰,简洁明了,行之有效。已具备的条件和尚需解决的问题已具备的条件: 设计思路已经非常明确,已经具备使用UG仿真的能力。 搅拌机各部件的尺寸; 搅拌机的制造流程。尚需解决的问题:搅拌机工艺的确定,电动机和减速机的选择,搅拌机的装配工艺等等。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日Mechanical Design- The new blenderThe Design Process:Designing starts with a need real.Existing apparatus may need improvements in durability, efficiency, weight, speed, or cost. New apparatus may be needed to perform a function previously done by men, such as computation, assembly, or servicing. With the objective wholly or partlyIn the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive cost. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strengths of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles of mechanics, such as those of static for reaction forces and for the optimum utilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress and deflection; of physical behavior of materials; and of fluid mechanics for lubrication and hydrodynamic drives. The analyses may be made by the same engineer who conceived the arrangement of mechanisms, or, in a large company, they may be made by a separate analysis division or research group. Design is a reiterative and cooperative process, whether done formally or informally, and the analyst can contribute to phases other than his own. Product design requires much research and development. Many Concepts of an idea must be studied, tried, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems. Product liability suits designers and forced in material selection, using the best program. In the process of material, the most common problems for five (a) dont understand or not use about the latest application materials to the best information, (b) failed to foresee and consider the reasonable use material may (such as possible, designers should further forecast and consider due to improper use products. In recent years, many products liability in litigation, the use of products and hurt the plaintiff accused manufacturer, and won the decision), (c) of the materials used all or some of the data, data, especially when the uncertainty long-term performance data is so, (d) quality control method is not suitable and unproven, (e) by some completely incompetent persons choose materials.Through to the above five questions analysis, may obtain these questions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity. May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding.Finally, a design based upon function, and a prototype may be built. If its tests are satisfactory, the initial design will undergo certain modifications that enable it to be manufactured in quantity at a lower cost. During subsequent years of manufacture and service, the design is likely to undergo changes as new ideas are conceived or as further analyses based upon tests and experience indicate alterations. Sales appeal.Some Rules for Design:In this section it is suggested that, applied with a creative attitude, analyses can lead to important improvements and to the conception and perfection of alternate, perhaps more functional, economical,and durable products. To stimulate creative thought, the following rules are suggested for the designer and analyst. The first six rules are particularly applicable for the analyst.1. A creative use of need of physical properties and control process.2. Recognize functional loads and their significance.3. Anticipate unintentional loads.4. Devise more favorable loading conditions.5. Provide for favorable stress distribution and stiffness with minimum weight.6. Use basic equations to proportion and optimize dimensions.7. Choose materials for a combination of properties.8. Select carefully, stock and integral components.9. Modify a functional design to fit the manufacturing process and reduce cost.10. Provide for accurate location and noninterference of parts in assembly.Machinery design covers the following contents.1. Provides an introduction to the design process , problem formulation ,safety factors.2. Reviews the material properties and static and dynamic loading analysis ,Including beam , vibration and impact loading.3. Reviews the fundamentals of stress and defection analysis.4. Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.5. Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses ,and surface fatigue.6. Investigates shaft design using the fatigue-analysis techniques.7. Discusses fluid-film and rolling-element bearing theory and application8. Gives a thorough introduction to the kinematics, design and stress analysis of spur gears , and a simple introduction to helical ,bevel ,and worm gearing.9. Discusses spring design including compression ,extension and torsion springs.10. Deals with screws and fasteners including power screw and preload fasteners.11. Introduces the design and specification of disk and drum clutches and brakes.Machine Design:The complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge.One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to todays designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations.Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked. The computer is a tool helpful to mechanical designers to lighten tedious calculations, and provide extended analysis of available data. Interactive systems, based on computer capabilities, have made possible the concepts of computer aided design (CAD) and computer-aided manufacturing (CAM). How does the psychologist frequently discuss causes the machine which the people adapts them to operate. Designs personnels basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on. If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of productMust regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly.A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons obsoletely many, knows very well the method for the people. Because many person of conservativeness, does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea.Here is to introduce the design concept of a new type of mixer.The increasing adoption of haptic modality in human-computer interaction paradigms has led to a huge demand for new tools that help novice users to author and edit haptic applications. Currently, the haptic application development process is a time consuming experience that requires programming expertise. The complexity of haptic applications development rises from the fact that the haptic application components (such as the haptic API, the device, the haptic rendering algorithms, etc.) need to interact with the graphic components in order to achieve synchronicity.Additionally, there is a lack of application portability as the application is tightly coupled to a specific device that necessitates the use of its corresponding API. Therefore, device and API heterogeneity lead to the fragmentation and disorientation of both researchers and developers. In view of all these considerations, there is a clear need for an authoring tool that can build haptic applications while hiding programming details from the application modeler (such as API, device, or virtual model).The Blender design philosophy is based on three main tasks: data storage, editing, and visualization. It follows a data- visualize-edit development cycle for the 3D modeling pipe line. A 3D scene is represented using data structures within the Blender architecture. The modeler views the scene, makes changes using the editing interface which directly modifies the underlying data structures, and then the cycle repeats.To better understand this development cycle, consider the representation of a 3D object in Blender. A 3D object may be represented by an array of vertices which have been organized as a polygonal mesh. Users may choose to operate on any subset of this data set. Editing tasks may include operations to rotate, scale, and translate the vertices, or perhaps a re-meshing algorithm to cleanup redundant vertices and transform from a quad to a triangle topology. The data is visualized using a graphical 3D renderer which is capable of displaying the object as a wireframe or as a shaded, solid surface. The visualization is necessary in order to see the effects of editing on the data. In a nutshell, this example defines the design philosophy behind Blenders architecture.In Blender, data is organized as a series of lists and base data types are combined with links between items in each list, creating complex scenes from simple structures.This allows data elements in each list to be reused, thus reducing the overall storage requirements. For example, a mesh may be linked by multiple scene objects, but the position and orientation may change for each object and the topology of the mesh remains the same. The meshes also share a common material property. The entire scene is rendered on one of several screens, which visualizes the scene.We adopt the Blender design approach for our authoring tool. The data structures which are used to represent objects in a 3D scene have been augmented to include fields for haptic properties (e.g., stiffness, damping); user interface components (e.g., button panels) which allow the modeler to change object properties have also been updated to include support for modifying the haptic properties of an object. Additionally, an interactive hapto-visual renderer has been implemented to display the 3D scene graphically and haptically, providing the modeler or artist with immediate feedback about the changes they make to the scene. in the current version of the HAMLAT. the modifications to the Blender framework include: data structures for representing haptic properties,an editing interface for modifying haptic properties, an external renderer for displaying and previewing haptically enabled scenes, scripts which allow scenes to be imported/exported in the HAML file format.A class diagram outlining the changes to the Blender ramework is shown. Components which are ertinent to HAMLAT are shaded in gray. HAMLAT builds on existing Blender sub-systems by extending them or haptic modeling purposes. Data structures for representing object geometry and graphical rendering areaugmented to include field which encompass the tactile properties necessary for haptic rendering.To allow the user to modify haptic properties GUI Components are integrated as part of the Blender editing panels. The operations triggered by these components operate directly on the d ata structures used for representing hatic cues and may be considered part of the editing step of the Blender design cycle.Similarly to the built-in graphical renderer, HAMLAT uses a custom rendlerer for displaying 3Ds scenes grphcal and haptcall, an is ineedn of the Blender renderer. This component is developed independently since haptical and graphical rendering must be performed simultaneously and synchronously. A simulation loop is used to update haptic rendering forces at a rate which maintains stability and quality. A detailed discussion of the implementation of these classes and their connectivity is given in the next section.III IMLIEMENTATIONA Data StructureA.1 Mesh Data TypeBlender uses many different data structures to represent the various types of objects in a 3D scene a vertices; a lamp contains colour and intensity values; and camera a object contains intrinsic viewing parameters.The Mesh data structure iS used by the Blender inframework to describe a polygonal mesh object. It iS of particular interest for hapic rendering since many solid objects in a 3D scene may be represented using this type of data structure. The tactile and kinesthetic cues, which are displayed due to interaction with virtual objects, are typically rendered based on the geometry of the mesh. Hptic rendering is performed based primary on data stored in this data type. Other scene components such as lamps, cameras, or lines are not intuitively rendered using force feedback haptic devices and are therefore not of current interest for haptic rendering.An augmented version of the Mesh data structure is shown. It contains fields for vertex and face data, plus some special custom data fields which allow data to be stored to/retrieved from disk and memory. We have modified this data type to include a pointer to a MHaptics data structure, which stores haptic properties such as stiffness, damping, and friction for the mesh elements.A.2 Edit Mesh Data TypeIt should be noted that the Mesh data type has a comPlimentary data structure, called EditMesh, which is used when editing mesh data. It holds a copy of the vertex, edge ,and face data for a polygonal mesh. when the user switches to editing mode, the Blender copies the data from a Mesh into an EditMesh and when editing is complete the data is copied back.Care must be taken to ensure that the hapic property data structure remains intact during the copy sequence. The EditMesh data structure has not been modified to contain a copy of the hapic property data ,but this may properties in edit mode is required). The editing mode is mainly used to modify mesh topology and geometry, not the haptic and graphical rendering characteristics,A.3 Haptic PropertiesIn this section well briefly discuss the haptic properties which may currently be modeled using HAMLAT. It is important for the modeler to understand these properties and their basis for use in haptic rendering.The stiffness of an object defines how resistant it is to deformation by some applied force. Hard objects, such as a rock or table, have very high stiffness; soft objects, such as rubber ball, have low stiffness. The hardness-softness of an object is typically rendered using th spring-force equation: Where the force feedback vector f which is displayed to the user is computed using ks the stiffness coefficient (variable name stiffness)for the object and x the penetration depth (displacement) of the haptic proxy into an object. The stiffness coefficient has a range of 0,1, where 0 represents no resistance to deformation and 1 represents the maximum stiffness which may be rendered by the haptic device. The damping of an object defines its resistance to the rate of deformation due to some applied force. It is typically rendered using the force equation:Where kd is the damping coefficient (variable nameMHaptics; damping) anddepdt is the velocity ofthe haptic proxy as it;penetrates an object. The damping coefficient also has a range of 0,1 and may be used to model viscous behaviour of a material. It also increases the stability of the hapticrendering loop fordstiffmaterials.The static friction (variable name stjriction) and dynamic friction (variable name dyjriction) coefficient are used to model the frictional forces experienced while xploring the surface of a 3D object. Static friction is experienced when the proxy is not moving over the objects surface, and an initial force must be used to overcome static friction. Dynamic friction is felt when the proxy moves across the surface, rubbing against it.Frictional coefficients also have a range of /0,1, with a value of 0 making the surface of a 3D object feel slippery and a value of 1 making the object feel very rough. Frictional forces are typically rendered in a direction tangential to the collision point of the hapticproxy at an objects surface. B. Editing Blender uses a set of non-overlapping windows called spaces to modify various aspects of the 3D scene and its objects. Each space is divided into a set of areas andpanels which are context aware. That is, they provide functionality based on the selected object type. Forexample, if a camera is selected the panel will display components which allow the modeler to change the focal length and viewing angle of the camera, but these components will not appear if an object of another type is selected.Shows a screen shot of the button space which is used to edit properties for a haptic mesh. It includes user-interface panels which allow a modeler to change the graphical shading properties of the mesh, perform simple re-meshing operations, and to modify the haptic properties of the selected mesh.HAMLAT follows the context-sensitive behavior of Blender by only displaying the haptic editing panel when a polygonal mesh object is selected. In the future, this panel may be duplicated to support haptic modeling for other object types, such as NURB surfaces. The Blender framework offers many user-interface components (e.g., buttons, sliders, pop-up menus) which may be used to edit the underlying data structures. The haptic properties for mesh objects are editable using sliders or by entering a float value into a text box located adjacent to the slider. When the value of the slider/text box is changed, it triggers an event in the Blender window sub-system. A unique identifier that the event is for the haptic property panel and the HAMLAT code should be called to update haptic properties for the currently selected mesh.C Hapto-Visual RenderingBlender currently support graphical rendering of scenes using an internal render or an external renderer (e.g., 4). In this spirit, the haptic renderer used by HAMLAT has been developed as an exteral renderer. It uses the OpenGL and OpenHaptics toolkit 5 to perform graphic and hapic rendering ,respectively.The 3D scene which is being modeled is rendered using two passes: the first pass render the scene graphically, and the second pass renders it haptically. The second pass is required because the OpenHaptics toolkit intercepts commands send to the OpenGL pipeline and uses them to display the scene using haptic rendering techniques. In this pass, the haptic properties of each mesh object are used much in the same way color and lighting are used by graphical rendering they define the type of material for each object. To save CPU cycles, the lighting and graphical material properties are excluded from the haptic rendering pass.Figure 7 shows source code which is used to apply the material properties during the haptic rendering pass. The haptic renderer is independent from the Blender framework in that it exists outside the original source code. However, it is still heavily dependent on Blender data structures and types.D. ScriptingThe Blender Python (BPy) wrapper exposes many of the internal data structures, giving the internal Python scripting engine may access them. Similar to the data structures used for representing mesh objects in the native Blender framework, wrappers allow user defined scripts to access and modify the elements in a 3D scene.The hapic properties of a mesh object may be accessed through the Mesh wrapper class. A haptics attribute has been added to each of these classes and accessed through the Python scripting system. Figure 8 shows Python code to read the haptic properties from a mesh object and export to a file. Similar code is used to import/export HAML scenes from/to files.An import script allows 3D scenes to be read from a HAML file and reproduced in the HAMLAT application; export script allows 3D scenes to be written to a HAML file, including haptic properties, and used in otherHAML applications. The BPy wrappers also expose the Blender windowing system. Figure 9 shows a panel which appears when the user exports a 3D scene to the HAML file format. It allows the user to specify supplementary information about the application such as a description, target hardware, and system requirements.These are fields defined by the HAML specification 2 and are included with the authored scene as part of the HAML file format. User-interface components displayed on this panel are easily extended to agree with the future revisions of HAML. The current version of HAMLAT shows that a unified modeling tool for graphics and haptics is possible. Promisingly, the features for modeling haptic properties have been integrated seamlessly into the Blender framework, which indicates it was a good choice as a platform for development of this tool. Blenders modular architecture will make future additions to its framework very straightforward.Currently, HAMLAT supports basic functionality for modeling and rendering hapto-visual applications. Scenes may be created, edited, previewed, and exported as part of a database for use in by other hapto-visual applications, such as the HAML player. However, there is room for growth and in there are many more ways we can continue leveraging existing Blender functionality.As per future work , we plan to extend HAMLAT TO include support for other haptic platforms and devices.Currently, only the PHANTOM series of devices is supported since the interactive renderer is dependent on the OpenHaptics toolkit.In order to support otherd evices, a cross-platform library such as Chai3D orHaptik may be used to perform rendering. These libraries support force rendering for a large range of haptic hardware. Fortunately, due to the modularity of our implementation, only the interactive haptic rendering component need be altered for these changes.In addition to support multiple hardware platforms, a user interface component which allows the selection and configuration of haptic devices will be important. Most likely, this will be added as part of the user preferences panel in Blender.Adding support for haptic devices as part of editing asks is also a planned feature. This will allow the odeler to modify the shape, location, and other properties on in-scene objects. For example, the sculptingo de in Blender allows a user to manipulate the geometryf a 3D object using a natural interface, similar to eshaping a piece of clay. HAMLAT will build on this echnology by allowing the modeler to manipulate the irtual clay using high DOF haptic interfaces. 机械设计-新型搅拌机设计流程:设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要求的,则再将对初步设计进行某些修改,使它能够在制造成本上有所降低。产品的设计需要不断探索和发展。许多方案必须被研究、试验、完善,然后决定使用还是放弃。虽然每个工程学问题的内容是独特的,但是设计师可以按照类似的步骤来解决问题。产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序。在材料过程中,五个最常见的问题为:(1)不了解或者不会使用关于材料应用方面的最新最好的信息资料;(2) 未能预见和考虑材料的合理用途(如有可能,设计人员还应进一步预测和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的原告控告生产厂家,并且赢得判决);(3) 所使用的材料的数据不全或是有些数据不确定,尤其是当其性能数据长期不更新;(4) 质量控制方法不适当和未经验证;(5) 由一些完全不称职的人员选择材料。通过对上述五个问题的分析,可以得出这些问题是没有充分理由而存在的结论。对这些问题的研究分析可以为避免这些问题的出现而指明方向。尽管采用最好的材料选择方法也不能避免发生产品责任诉讼,设计人员和工业界按照适当的程序进行材料选择,可以大大减少诉讼的数量。从以上的讨论可以看出,选择材料的人们应该对材料的性质,特点和加工方法有一个全面而基本的了解。在随后生产和售后服务的几年中,要接受新观念的变化,或者由试验和经验为基础,进一步分析并改进。一些设计规则:在本节中,建议要运用创造性的态度来替代和改进。也许会创造出更实用、更经济、更耐用的产品。为了激发创造性思维,下列是设计和分析的建议规则。前六个规则对设计者来说特别适用。(1)要有创造性的利用所需要的物理性质和控制过程;(2)认识负载产生的影响及其意义;(3)预测没有想到的负载;(4)创造出对载荷更为有利的条件;(5)提供良好的应力分布和最小的刚度条件;(6)运用最简单的方程来优化体积和面积;(7)选择组合材料;(8)仔细选择所备的原料和不可缺少的组件;(9)调整有效的设计方案,以适应生产过程和降低成本;(10)规定好准确的位置条件为了使组件安装时不干涉。机械设计包括一下内容:(1)对设计过程、设计所需要公式以及安全系数进行介绍;(2)回顾材料特性、静态和动态载荷分析,包括梁、振动和冲击载荷;(3)回顾应力的基本规律和失效分析;(4)介绍静态失效理论和静态载荷下机械断裂分析;(5)介绍疲劳失效理论并强调在压力条件下接近高循环的疲劳设计,这通常用在旋转机械的设计中;(6)深入探讨机械磨损机理、表面接触应力和表面疲劳现象;(7)使用疲劳分析技术校核轴的设计;(8)讨论润滑油膜与滚动轴承的理论和应用;(9)深入介绍直齿圆柱齿轮的动力学、设计和应力分析,并简单介绍斜齿轮、锥齿轮和涡轮有关方面的问题;(10)讨论弹簧设计、螺杆等紧固件的设计,包括传动螺杆和预紧固件;(11)介绍盘式和鼓式离合器以及制动器的设计和技术说明。机械设计:一台完整机器的设计是一个复杂的过程。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。任何产品在设计时第一步就是选择产品每个部分的构成材料。许多的材料被今天的设计师所使用。对产品的功能,它的外观、材料的成本、制造的成本作出必要的选择是十分重要的。对材料的特性必须事先作出仔细的评估。仔细精确的计算是必要的,以确保设计的有效性。在任何失败的情况下,最好知道在最初设计中有有缺陷的部件。计算(图纸尺寸)检查是非常重要的。一个小数点的位置放错,就可以导致一个本可以完成的项目失败。设计工作的各个方面都应该检查和复查。计算机是一种工具,它能够帮助机械设计师减轻繁琐的计算,并对现有数据提供进一步的分析。互动系统基于计算机的能力,已经使计算机辅助设计(CAD)和计算机辅助制造(CAM)成为了可能。心理学家经常谈论如何使人们适应他们所操作的机器。设计人员的基本职责是努力使机器来适应人们。这并不是一项容易的工作,因为实际上并不存在着一个对所有人来说都是最优的操作范围和操作过程。另一个重要问题,设计工程师必须能够同其他有关人员进行交流和磋商。在开始阶段,设计人员必须就初步设计同管理人员进行交流和磋商,并得到批准。这一般是通过口头讨论,草图和文字材料进行的。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为 所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。下面就来介绍下一种新型搅拌机的设计理念。越来越多的通过触觉的方式在人类-电脑的互动方式的应用造成了对新的工具的巨大的需求,这些新的工具可以帮助新手用户写作和编辑触觉应用。目前,触觉的应用发展过程是一个耗时的经历,它需要编程知识。触觉应用的复杂性,从一个事实,即触觉应用组件(如触觉的空气污染指数,设备,该触觉描写算法等)需要互动图形组件,以实现同步。此外,一个缺少应用可能性,因为应用是紧耦合到特定的装置必须使用其相应的空气污染指数。因此,设备和空气污染指数的异质性,导致两个研究人员和开发人员分裂和迷失方向。在检查所有需要考虑的事时,有对创作工具明确的需要,可以建立触觉的应用, 也可以隐藏在应用程序建模的编程(如空气污染指数,装置,或虚拟模型)。搅拌器的设计理念,是基于三个主要任务:数据存储,编辑和可视化。它沿袭了开发周期为三维建模数据管道可视 - 编辑。一个三维场景代表的是在该搅拌器结构中使用数
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:【机械类毕业论文中英文对照文献翻译】机械设计-新型搅拌机
链接地址:https://www.renrendoc.com/p-77691334.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!