【机械类毕业论文中英文对照文献翻译】步进电机的振荡、不稳定以及控制
收藏
资源目录
压缩包内文档预览:
编号:77691682
类型:共享资源
大小:262.54KB
格式:RAR
上传时间:2020-05-07
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
6
积分
- 关 键 词:
-
机械类毕业论文中英文对照文献翻译
机械类
毕业论文
中英文
对照
文献
翻译
步进
电机
振荡
不稳定
以及
控制
- 资源描述:
-
【机械类毕业论文中英文对照文献翻译】步进电机的振荡、不稳定以及控制,机械类毕业论文中英文对照文献翻译,机械类,毕业论文,中英文,对照,文献,翻译,步进,电机,振荡,不稳定,以及,控制
- 内容简介:
-
毕业设计文献翻译 院(系)名称工学院机械系 专业名称机械设计制造及其自动化 学生姓名骆小龙 指导教师邹景超2012年 03 月 10 日Oscillation, Instability and Control of Stepper MotorsLIYU CAO and HOWARD M. SCHWARTZDepartment of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,Ottawa, ON K1S 5B6, Canada(Received: 18 February 1998; accepted: 1 December 1998)Abstract. A novel approach to analyzing instability in permanent-magnet stepper motors is presented. It is shown that there are two kinds of unstable phenomena in this kind ofmotor: mid-frequency oscillation and high-frequency instability. Nonlinear bifurcation theory is used to illustrate the relationship between local instability and midfrequencyoscillatory motion. A novel analysis is presented to analyze the loss of synchronism phenomenon, which is identified as high-frequency instability. The concepts of separatrices and attractors in phase-space are used to derive a quantity to evaluate the high-frequency instability. By using this quantity one can easily estimate the stability for high supply frequencies. Furthermore, a stabilization method is presented. A generalized approach to analyze the stabilization problem based on feedback theory is given. It is shown that the mid-frequency stabilityand the high-frequency stability can be improved by state feedback. Keywords: Stepper motors, instability, nonlinearity, state feedback.1. IntroductionStepper motors are electromagnetic incremental-motion devices which convert digital pulse inputs to analog angle outputs. Their inherent stepping ability allows for accurate position control without feedback. That is, they can track any step position in open-loop mode, consequently no feedback is needed to implement position control. Stepper motors deliver higher peak torque per unit weight than DC motors; in addition, they are brushless machines and therefore require less maintenance. All of these properties have made stepper motors a very attractive selection in many position and speed control systems, such as in computer hard disk drivers and printers, XY-tables, robot manipulators, etc.Although stepper motors have many salient properties, they suffer from an oscillation or unstable phenomenon. This phenomenon severely restricts their open-loop dynamic performance and applicable area where high speed operation is needed. The oscillation usually occurs at stepping rates lower than 1000 pulse/s, and has been recognized as a mid-frequency instability or local instability 1, or a dynamic instability 2. In addition, there is another kind of unstable phenomenon in stepper motors, that is, the motors usually lose synchronism at higher stepping rates, even though load torque is less than their pull-out torque. This phenomenon is identified as high-frequency instability in this paper, because it appears at much higher frequencies than the frequencies at which the mid-frequency oscillation occurs. The high-frequency instability has not been recognized as widely as mid-frequency instability, and there is not yet a method to evaluate it.Mid-frequency oscillation has been recognized widely for a very long time, however, a complete understanding of it has not been well established. This can be attributed to the nonlinearity that dominates the oscillation phenomenon and is quite difficult to deal with.384 L. Cao and H. M. SchwartzMost researchers have analyzed it based on a linearized model 1. Although in many cases, this kind of treatments is valid or useful, a treatment based on nonlinear theory is needed in order to give a better description on this complex phenomenon. For example, based on a linearized model one can only see that the motors turn to be locally unstable at some supplyfrequencies, which does not give much insight into the observed oscillatory phenomenon. In fact, the oscillation cannot be assessed unless one uses nonlinear theory.Therefore, it is significant to use developed mathematical theory on nonlinear dynamics to handle the oscillation or instability. It is worth noting that Taft and Gauthier 3, and Taft and Harned 4 used mathematical concepts such as limit cycles and separatrices in the analysis of oscillatory and unstable phenomena, and obtained some very instructive insights into the socalled loss of synchronous phenomenon. Nevertheless, there is still a lack of a comprehensive mathematical analysis in this kind of studies. In this paper a novel mathematical analysis is developed to analyze the oscillations and instability in stepper motors.The first part of this paper discusses the stability analysis of stepper motors. It is shown that the mid-frequency oscillation can be characterized as a bifurcation phenomenon (Hopf bifurcation) of nonlinear systems. One of contributions of this paper is to relate the midfrequency oscillation to Hopf bifurcation, thereby, the existence of the oscillation is provedtheoretically by Hopf theory. High-frequency instability is also discussed in detail, and a novel quantity is introduced to evaluate high-frequency stability. This quantity is very easyto calculate, and can be used as a criteria to predict the onset of the high-frequency instability. Experimental results on a real motor show the efficiency of this analytical tool.The second part of this paper discusses stabilizing control of stepper motors through feedback. Several authors have shown that by modulating the supply frequency 5, the midfrequencyinstability can be improved. In particular, Pickup and Russell 6, 7 have presented a detailed analysis on the frequency modulation method. In their analysis, Jacobi series was used to solve a ordinary differential equation, and a set of nonlinear algebraic equations had to be solved numerically. In addition, their analysis is undertaken for a two-phase motor, and therefore, their conclusions cannot applied directly to our situation, where a three-phase motor will be considered. Here, we give a more elegant analysis for stabilizing stepper motors, where no complex mathematical manipulation is needed. In this analysis, a dq model of stepper motors is used. Because two-phase motors and three-phase motors have the same qd model and therefore, the analysis is valid for both two-phase and three-phase motors. Up to date, it is only recognized that the modulation method is needed to suppress the midfrequency oscillation. In this paper, it is shown that this method is not only valid to improve mid-frequency stability, but also effective to improve high-frequency stability.2. Dynamic Model of Stepper MotorsThe stepper motor considered in this paper consists of a salient stator with two-phase or threephase windings, and a permanent-magnet rotor. A simplified schematic of a three-phase motor with one pole-pair is shown in Figure 1. The stepper motor is usually fed by a voltage-source inverter, which is controlled by a sequence of pulses and produces square-wave voltages. Thismotor operates essentially on the same principle as that of synchronous motors. One of major operating manner for stepper motors is that supplying voltage is kept constant and frequencyof pulses is changed at a very wide range. Under this operating condition, oscillation and instability problems usually arise.Figure 1. Schematic model of a three-phase stepper motor.A mathematical model for a three-phase stepper motor is established using qd framereference transformation. The voltage equations for three-phase windings are given byva = Ria + L*dia /dt M*dib/dt M*dic/dt + dpma/dt ,vb = Rib + L*dib/dt M*dia/dt M*dic/dt + dpmb/dt ,vc = Ric + L*dic/dt M*dia/dt M*dib/dt + dpmc/dt ,where R and L are the resistance and inductance of the phase windings, and M is the mutual inductance between the phase windings. _pma, _pmb and _pmc are the flux-linkages of thephases due to the permanent magnet, and can be assumed to be sinusoid functions of rotor position _ as followpma = 1 sin(N),pmb = 1 sin(N 2/3),pmc = 1 sin(N - 2/3),where N is number of rotor teeth. The nonlinearity emphasized in this paper is represented by the above equations, that is, the flux-linkages are nonlinear functions of the rotor position.By using the q; d transformation, the frame of reference is changed from the fixed phase axes to the axes moving with the rotor (refer to Figure 2). Transformation matrix from the a; b; c frame to the q; d frame is given by 8For example, voltages in the q; d reference are given byIn the a; b; c reference, only two variables are independent (ia C ib C ic D 0); therefore, the above transformation from three variables to two variables is allowable. Applying the abovetransformation to the voltage equations (1), the transferred voltage equation in the q; d frame can be obtained asvq = Riq + L1*diq/dt + NL1id + N1,vd=Rid + L1*did/dt NL1iq, (5)Figure 2. a, b, c and d, q reference frame.where L1 D L CM, and ! is the speed of the rotor.It can be shown that the motors torque has the following form 2T = 3/2N1iqThe equation of motion of the rotor is written asJ*d/dt = 3/2*N1iq Bf Tl ,where Bf is the coefficient of viscous friction, and Tl represents load torque, which is assumed to be a constant in this paper.In order to constitute the complete state equation of the motor, we need another state variable that represents the position of the rotor. For this purpose the so called load angle _ 8 is usually used, which satisfies the following equationD/dt = 0 ,where !0 is steady-state speed of the motor. Equations (5), (7), and (8) constitute the statespace model of the motor, for which the input variables are the voltages vq and vd. As mentioned before, stepper motors are fed by an inverter, whose output voltages are not sinusoidal but instead are square waves. However, because the non-sinusoidal voltages do not change the oscillation feature and instability very much if compared to the sinusoidal case (as will be shown in Section 3, the oscillation is due to the nonlinearity of the motor), for the purposes of this paper we can assume the supply voltages are sinusoidal. Under this assumption, we can get vq and vd as followsvq = Vmcos(N) ,vd = Vmsin(N) ,where Vm is the maximum of the sine wave. With the above equation, we have changed the input voltages from a function of time to a function of state, and in this way we can represent the dynamics of the motor by a autonomous system, as shown below. This will simplify the mathematical analysis.From Equations (5), (7), and (8), the state-space model of the motor can be written in a matrix form as follows = F(X,u) = AX + Fn(X) + Bu , (10)where X D Tiq id ! _UT , u D T!1 TlUT is defined as the input, and !1 D N!0 is the supply frequency. The input matrix B is defined byThe matrix A is the linear part of F._/, and is given byFn.X/ represents the nonlinear part of F._/, and is given byThe input term u
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。