【机械类毕业论文中英文对照文献翻译】灵巧的装配三个机械手指运动的设计
收藏
资源目录
压缩包内文档预览:
编号:77692405
类型:共享资源
大小:13.21KB
格式:RAR
上传时间:2020-05-07
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
6
积分
- 关 键 词:
-
机械类毕业论文中英文对照文献翻译
机械类
毕业论文
中英文
对照
文献
翻译
灵巧
装配
三个
机械
手指
运动
设计
- 资源描述:
-
【机械类毕业论文中英文对照文献翻译】灵巧的装配三个机械手指运动的设计,机械类毕业论文中英文对照文献翻译,机械类,毕业论文,中英文,对照,文献,翻译,灵巧,装配,三个,机械,手指,运动,设计
- 内容简介:
-
翻译英文原文名 Design and control of three fingers motion for dexterous assembly of compliant elements中文译名 灵巧的装配三个机械手指运动的设计和控制兼容的元素学 院 专业班级 学生姓名 学生学号 指导教师 填表日期 二一 年 月英文原文版出处: INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY 译文成绩: 指导教师(导师组长)签名: 译文:在本文中,作者描述并演示了如何三指夹持器可以设计和模拟,同时提供总运动和精细运动的手指。令人满意的运动响应手指的模拟实现。力反馈和总运动定位近似配置到他们的手指的精细运动,包括所提供的一个经典的PD控制STRATE GY。与环境的接触力控制抓手行业中的应用是非常重要的。手指被控制的方式,模仿一个人的手的拇指用力中指和食指的运动学和动力学。这种模仿是需要设计必要的处理细腻和非delicat的工程组件正确的运动和触觉的力量。为了EV aluate三指夹持器的设计理念和能力,一个具有挑战性的装配过程中已被确定。这是目前正在手工组装的,因为人的手出来的灵巧运动执行目前的自动装配策略的气体调节阀的装配。三指夹持器组件内置的使用Solidworks软件工具,它的机械装配表示成立于SimMechanics建立。关键词:三个手指爪,PD控制,建筑运动,精细运动,触觉力,模仿。机器人的手已经开发了与复制人的手灵巧性和适应能力在充当一个机械手或作为假体的移动设备的目标。先锋设计包括:冈田的手(冈田,1982年)的斯坦福大学/ JP手(索尔兹伯里等,1982年),在贝尔格莱德/ USC手(Bekey等人,1999年),在犹他州/ MIT灵巧手(雅各布森,2001)和LMS的手(Gazeau,2001年)。然而,重大努力,仍然要找到设计足够简单,可以很容易地建立和控制时,为了得到实用的系统(Bicchi,2000)。初手的设计,克服了有限的成功,相当重视已被放置在不牺牲灵巧度的自由度(自由度)的数量减少,从而减少了所需数量的致动器。特别是,SSL手(如同2002),Graspar的手(Crisman等,1996),模具的日均的手(Biagotti等,2001),TBM的手(特奥狄卓夫Mamadou等,2001),这路径。也有少数原型使用一个较小的数量的致动器,但不减少自由度数。这种方法,已知的致动下,可以实现通过使用无源元件,包括弹簧的手指的形状的对象物的把持(广濑等人,1978)的机械适应 - (马萨等人,2002)。类似的方法包括使用弹性指骨,增加适应能力,但大大降低强度的把握(Schulz等,2001)。在一个复杂的处理系统中,夹持器,虽然小是一个显着的整个系统的一部分(Guerry,2001年)。夹持器可以设计是最密集的组件的组件系统。适当的夹具设计可以简化整体组装,增加整个系统的可靠性,以及降低了实现成本。虽然夹子已被广泛用于自动化的制造,装配,包装等,已经很少关注的研究和设计,夹子的高速组装兼容的元素。在夹持器设计的初步工作包括众多的不同的夹持器设计,包括夹持器与手指僵硬和/或灵活的手指,真空夹持器,和磁夹持器(Lunstrom,1977)。一个机械手已开发的基础上的基本的一个人的手抓握的型态和设计的手可以掌握所有的基本的形状,例如矩形和三角形棱镜,球体和圆柱体(斯金纳,1975)。在日本,重大工作已经开展夹持器(Okada等人,1977)的设计,模拟人的手的形状,结构,和运动。软已经开发出来,夹持器是能够符合不规则形状的物体,并把它们具有均匀的外轮廓的沿着手指的长度的压力分布(广濑等人,1977)。工业夹具设计的创造性办法采用运动结构的数据库,其中包含机器人抓手机制,运动学结构的一般信息,提出的功能,不同的驱动机构和应用程序(李,1982)。夹子的分类系统已研制成功基于夹紧力的大小,位置和方向的因素,例如。使用这种方法时,以确定额外的设计约束条件的基础上最终的安装与活性s表示机器人将执行(Kolpanshnikov等人,1979)。新人形机器人手设计灵巧的末端效应器与Wi各种各样的任务和对象,可以应付中遇到的环境(Kyriakopoles等人,1977)。机器人的手和手指,通常面临着哪几个接触点,每个手指的情况发生同时,必须保持使捕获的对象从抓不打滑。为此,一些已提出方法,以实现稳定的控制和灵巧的操纵任务,以及一些相关的研究发表于20世纪80年代后期。他们还公关opose的几何方法来确定这样的实力。他们的研究指出,概念“被迫关闭”(鲁洛等人,1983)和“形封闭”(阿雅娜Lakshiminar,1978)是必不可少的完整避免捕获的对象。然后,制定forcin克封闭系统(阮,1986年,1987and1988),因此,用于计算最佳的内部FORC ES可以积极探索的战略。的DIR等计算方法来捕获的风格和提供最佳的内部强度,使得内部的未决的摩擦力最小化上的固定触点(Ji等,1988)。所需的稳定的把持的把握力,可降低到一个线性规划问题,考虑摩擦和关节扭矩限制约束(Kerr等,1986)。然而,这些研究不是基于动态,但运动静几何描述。把握的解析模型,质量的措施和约束来解决问题的choosin克一个的把握(Cutkosky,1989)。此外,滚动体的运动学和目标之间的指尖表面使用速度和正常的约束和系统是动态的把握,含有轧制任务(Cole等,1989)。此外,该把握最佳的利用微分几何的对象,这样一个任务可以有效地应用于机器人运动规划找到在非完整轧制约束下(Li等人,1988)和(沙斯特里等人,1989)。这是第一次着重描述把持和操作的力量,可以独立使用,以控制输入端施加到所述机械手(小林,1985)。此外,该体系的控制的基础上的存在下,把持和操作力的分解计划目标对象的机器人手指(吉川等人,1988)和(Nakamura等人,1989),这之间的库仑摩擦基本型控制方案,如独立的运动或力的把握和操纵,已经得到澄清,是经常连接受雇于机器人和自动化resear chers的。因此,非凡的操纵的理论分析和机器人的手已经提出,他们控制策略的成功应用,成为一个众所周知的方式移动机械手和机器人的手。 20世纪90年代后,这些操作问题的进一步发展,这些控制技术被应用到多个机械手。例子是:学习力控制的位置控制的机器人机械臂建立刚性约束环境方面的不确定性,以弥补在迭代方式(Qiao等,1999);力控制问题考虑不改变控制的力感测方法体系结构来解决和改善清一郎,(2007年);了一种用于自动把持生成的对物体的形状的原语通过示范(约翰,2008年);在MATLAB / Simulink的机器人和机器人系统的可视化仿真使用一般的动态引擎和图形语言(莱昂,2008年);模拟的多指灵巧机器人手爪抓(2008年Ohol,)。在本文中,作者描述了三个手指的夹持器可以设计和模拟,同时提供建筑运动和手指的细议案。优良的运动,包括力反馈和总运动定位的手指到IR近似的配置提供的一个经典的PD控制策略。手指进行控制的方式根据模仿一个人的手的拇指用力中指和食指的运动学和动力学。此拟态是必需的设计正确的运动和触觉的力量,需要用手勒精致和细腻非工程组件。为了评估的设计理念和能力的三个指抓手已经确定具有挑战性的装配过程。这是目前组装,因为人的手出来的灵巧运动的气体调节阀的装配执行目前的自动装配策略。三指机器人夹持器的物理模型基于SimMechanics建立软件和应用SimMechanics建立有也得到了验证与Simulink仿真相比,具有相同的输出。这些研究表明,每一个手指的夹持器可以控制使用PD配方。这个抓手是一种新型的功能列入棱柱滑动元件每个手指,以方便处理大型和小型的兼容组件的夹子年底通常出现在高加快国内天然气调节灵巧的装配。 PD控制是非常有效的用于控制的轨迹用来存放对象的手指和力量。仿真结果已经表明,手指运动的半径在一个非常快速和平滑稳定的实现。必须加以控制的方式,模仿的运动学和动力学的手指迫使人类的手的拇指和食指。模仿是必要的,以设计合适的运动和触觉的力量,必要处理的细腻和非细腻的工程部件。在未来的工作中,灵巧抓兼容元素将模拟,以评估在手指之间的接触力和对象环境的稳定性。凸轮律设计方法将会进行调查,以获取灵巧抓物。Abstract In this paper, the authors describe and demonstrate how a three fingered gripper can be designed and simulated to provide bo th gross motion and fine motion to the fingers. Satisfactory motion responses for the finger simulation are achieved. The fine motion including force feedback and the gross motions, which orientate the fingers into their approximate configuration are provided by a classical PD control strate gy. The force controlling gripper in contact with the environment is very important in industry applications. The fingers are to be controlled in a manner which mimics the kinematics and dynamics of the thumb force finger and index finger of a human hand. This mimicry is required to design the correct motions and tactile forces necessary to handle delicate and non delicat e engineering components. In order to ev aluate the design philosophy and capability of the three fingered gripper, a challenging assembly process has been identified. This is assembly of a gas regulator valve which is currently being manually assembled since the dexterous motions of the human hand out perform current automatic assembly strategies. The three fingered gripper assembly was built using Solidworks software tool, and its mechanical assembly representation was established in SimMechanics. Keywords: Three Fingers Gripper, PD control, Gross Mo tion, Fine Motion, Tactile Force, Mimicry.1. Introduction Robotic hands have been developed with the aim of copying the human hand in terms of dexterity and adaptive capabilities to function as either a manipulator or as a prosthetic device. Pioneer designs include: Okadas hand (Okada, 1982) the Stanford/JP L hand (Salisbury et al , 1982), the Belgrade/USC hand (Bekey et al , 1999), the Utah/MIT Dexterous hand (Jacobsen, 2001) and the LMS hand (Gazeau, 2001). However, significant efforts have still to be made to fi nd designs simple enough to be easily built an d controlled, in order to obtain practical sy stems (Bicchi, 2000). To overcome the limited success of the early hand designs, considerable emphasis has been placed in reducing the number of degrees of freedom (DOFs) without sacrificing dexterity and thereby reducing the required number of actuators. In particular, the SSL hand (Akin, 2002), the Graspar hand (Crisman et al , 1996), the DIES-DIEM hand (Biagotti et al , 2001), and the TBM hand (Dechev et al , 2001) have followed this path. There are a few prototypes which use a smaller number of actuators but do not decrease the number of DOFs. This approach, known as under actuation can be implemented through the use of passive elements including springs to a mechanical adaptation of the finger to the shape of the object to be grasped (Hirose et al , 1978) ( Massa et al , 2002). A similar approach consists of using elastic phalanges, which increase the adaptation capability but decrease considerably the strength of the grasp (Schulz et a l, 2001). In a complex handling system, the gripper although small is a significant part of the entire system (Guerry, 2001). Grippers can be the most design-intensive components of an assembly syst em. Proper gripper design can simplify the overall assembly, increase the overall system reliability, as well as decrease the implementation cost. Whilst grippers have been widely used for automated manufacturing, assembly, and packing, etc, very little attention has been given to the research and design of grippers for the high speed assembly of compliant elements. Initial work in gripper design included a multitude of different gripper designs, includinggrippers with stiff fingers and/or flexible fingers, vacuum grippers, and magnetic grippers (Lunstrom, 1977). A mechanical hand has been developed based on the basic prehensile patterns of a human hand and the designed hand can grasp all basic shapes such as rectangular and triangular prisms, spheres and cylinders (Skinner, 1975). In Japan, significant work has been undertaken in which the shape, structure, and motion of the human hand is simulated for the design of grippers (Okada et al , 1977). The soft gripper has been developed that is able to conform the outer contour of objects of irregular shapes and hold them with uniform pressure distribution along the length of the fingers (Hirose et al , 1977). A creative approach to designing industrial grippers by using kinematic structure database, which contains general information about robot gripper mechanism, kinematic structures, function, type of drive mechanism and applications is presented (Lee, 1982). Classification system for grippers has been developed based on factors such as size, position and orientation of gripping forces. This method is used to determine additional design constraints based on the final installation and activitie s that the robot would be performing (Kolpanshnikov et al , 1979). The new anthropomorphic robot hand was designed as a dexterous end-effector that can cope with a wi de variety of tasks and object encountered in its environment (Kyriakopoles et al , 1977). Robot fingers and hands are usually confronted with a situation in which a few contact points of each finger take place simultaneously and must be maintained so that the captured object does not slip from the grasp. To this end, a number of methodologies to achieve stable control and dexterous manipulation tasks have been proposed, and a number of related studies published in the late 1980s. They also pr opose a geometric approach to determine the strength of this. Their study noted that the concepts “forced the closure of” (Reuleaux et al, 1983) and “form closure” (Lakshiminar ayana, 1978) are essential for complete refrain from captured objects. Then, forcin g the closure of system is formulated (Nguyen, 1986, 1987and1988).Therefore the strategy for computing optimal internal forc es that can be explored actively. A dir ect-calculation method to capture the style and provide the optimal internal strength so that the internal de pendency friction force on the fixed contact is minimized (Ji et a l, 1988). The grasp forces required for stable grasping can be reduced to a linear programming problem that considers friction and joint torque limit constraints (Kerr et al, 1986). These studies, however, were based not on dynamics but on statics with kinematic and geometric description. An analytic grasp models, quality measures and constraints are used to solve the problems of choosin g a grasp (Cutkosky, 1989 ). Furthermore, the kinematics of rolling between the object and fingertip surfaces using velocity and the normal constraints and systematically derived the dynamics of grasp containing the rolling task (Cole et al , 1989 ). In addition the optimal grasp of an object using differential geometry so that a task could be applied efficiently and robot motion planning could be found under nonholonomic rolling constraints (Li et al , 1988) and (Sastry et al , 1989). For the first time emphatically described grasping and manipulating the forces that can be used independently to control input applied to the robot hand (Kobayashi, 1985 ). Moreover, the architecture of control based on the decomposition schemes of grasping and manipulating forces in the presence of coulomb friction between the target object and the robot fingers (Yoshikawa et al , 1988) and (Nakamura et al , 1989 ) This fundamental type control scheme, such as independent grasping and manipulating motions or forces, has been clarified and is oft en employed by the robotics and automation resear chers. Therefore, an extraordinary number of theoretical analyses of manipulators and robotic hands have been proposed, and their successful application in control strategy became a well known way to move manipulators and robotic hands. After the 1990s, these manipulation problems were further developed, and these control techniques were applied to a number of robots. Examples are: the learning force control for a position controlled robotic manipulator was established to compensate the uncertainties regarding stiffness of the constraint environment in an iterative manner (Qiao et al, 1999); the problems of force control by considering the force sensing method without changing the control architecture is solved and improved Seiichiro, (2007); a method for automatic grasp generation based on object shape primitives by demonstration (Johan, 2008); the simulation of a robotic manipulator in MATLAB/Simulink and visualization of robot systems using general dynamic engines and graphical languages (Leon, 2008); simulation of a multifinger robotic gripper of dexterous grasping (Ohol, 2008). In this paper the authors describe how a three fingered gripper can be designed and simulated to provide both gross motion and fine motion to the fingers. The fine motion including force feedback and the gross motions which orientate the fingers into the ir approximate configuration is provided by a classical PD control strategy. The fingers are to be controlled in a manner which mimics the kinematics and dynamics of the thumb force finger and index finger of a human hand. This mimicry is required to design the correct motions and tactile forces necessary to hand le delicate and non delicate engi neering components. In order to evaluate the design philosophy and capability of the three fingered gripper challenging assembly process has been identified. This is the assembly of a gas regulator valve which is currently be ing assembled since the de
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。