【机械类毕业论文中英文对照文献翻译】胡萝卜在惰性介质流流化床中干燥的收缩
收藏
资源目录
压缩包内文档预览:
编号:77693266
类型:共享资源
大小:539.75KB
格式:RAR
上传时间:2020-05-07
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
6
积分
- 关 键 词:
-
机械类毕业论文中英文对照文献翻译
机械类
毕业论文
中英文
对照
文献
翻译
胡萝卜
惰性
介质
流流
化床中
干燥
收缩
- 资源描述:
-
【机械类毕业论文中英文对照文献翻译】胡萝卜在惰性介质流流化床中干燥的收缩,机械类毕业论文中英文对照文献翻译,机械类,毕业论文,中英文,对照,文献,翻译,胡萝卜,惰性,介质,流流,化床中,干燥,收缩
- 内容简介:
-
南昌航空大学科技学院学士学位论文 胡萝卜在惰性介质流流化床中干燥的收缩M.S. Hatamipour *, D. Mowla理科硕士Hatamipour Mowla博士 著摘要农产品中尤其是根用蔬菜在烘干的过程中发生了一些在物理和结构性的变化。根用蔬菜在烘干过程中的压缩,不管是从材料的最终用途还是仿真问题的方面来说,都具有重要意义的。本文中,我们将以惰性介质液态化烘干机来研究根用蔬菜的压缩。圆柱形的胡萝卜样品是用来作为试验培养基,为高水价含量食物系统提供模拟装置。我们将研究关于由各种不同参量如,气温,空气温度,样品直径,样品原始含水量,惰性粒子的在在与否,和气流速度等而产生的影响。据发现,胡萝卜在惰性烘干机烘干过程 中的压缩与与样品在烘干过程中的水分含量成相应的关系。气流速度,温度,和惰性介质在整个体制中并示对压缩有明显的影响。关键词:收缩 液体化烘干机 惰性介质液态流化床 高温载体1简介 这个烘干过程是在食品工程中最为重要的过程之一。在大多数的工业过程中,至少会有一个烘干步骤。这就意味着,从固体材料中移除少量的水分或者其它的液体以减少剩余溶液的容量来达到 一个可接受的低值。各种各样的固体物烘干方法已经逐渐发展起来,而且每种方法都有它们自己的特征。考虑到设备的热效率,液化床催十剂是在众多方法中最高效率和适合各种不同的干燥应用程序。(1996年,Strumillo 和Kudra)任何企图描述烘干这一行为的尝试必然要考虑到材料的物理参量,例如收缩和密度。众所周知,食物失水会发生容积理化,这就是我们所说的:缩水。这种在烘干过程中发生持续不断的的变化,不仅影响到固体物质的物理性质,而且会改变传输中表现的属性。(1955出版) 中提议一个简单的经验方程式,它制定了要用蔬菜在对流烘干过程中表面各的变化和水分含量之间的关系。提出的相关性需要关于原始含水量和干燥材料这一观点,必须具备丰富的知识。烘干过程中的应用初期显示:缩水的体积大概等于蒸发的水分体积。 Suzuki, Kiyoshi, Hasegawa, 和 Hosaka (1976)测量了要挂蔬菜在烘干过程中的缩水量。他们探究了上述模型的应用,继而更加深入尝试把实验数据和三各假定模型联系起来,即,统一烘干,核心烘干,和半核心烘干。在统一烘干模型的所有阶段中,假定缩水量与蒸发的失水量相等,第一个等式需要平衡湿量和体积密度相等,而第二个是原始水分含量与材料的体积密度相等。发展了两种广义的关于水价流失和基于水果和蔬菜中体积收缩的相互关系。第一种相互关系,是基于食物的合成物。而第二种关系是第一种之上的改进,是基于对最终容积缩水度的预测,但两者共同作用于样品的原始水分含量方面的知识 第二个模型提供了充分的实验数据以作评估。应用线性函数赋予缩水和水价含量两者关系。 提议土豆,苹果,和胡萝卜缩水的现象不仅仅是水分含量的作用,也是基于操作条件和样品几何学。 他报导,空气速度的不断加快显著地减少了苹果和土豆的缩水程度,但是空气温度,大气湿度,和样品结构的影响可忽略不计。但是在1994年发现,大蒜与水果和蔬菜的等方必的缩水不同,它是光纤定向的。他们指出,体积的功率比率是0.448,而不是Suzuki et al. 在1976年得出的2/3。 Zogzas, Maroulis, 和 Marinous-Kouris在1994年指出,在干 空气中的湿度与温度的收缩具有独立性。 Wang 和Brennan指出,在低温晾干过程中,有更大程度的土豆缩水了。Sjoholm 和 Gekas在1995年指出苹果体积在干燥过程的变化与水分含量成直线关系。1997年,基于热机械理论基础之上,Achanta, Okos, Cushman, 和 Kessler研究了在烘干过程中,萎缩食物水分的传输形成胶体。他们总结出一个长圆柱体的胶体,er=r0T2 是一个水分含量的线性函数。McMinn 和 Magee发现了一个在隧道干燥室柱形土豆样品的烘干过程中,水分含量的降低和空气温度线性相关式。Park提出,材料在烘干过程 中的缩水度是线性尺寸和水分含量的线性关系。Zhou, Mowla, Wang, 和 Rudolph提出,柱形胡萝卜在烘干过程中,以流化床和能量载体条件下,轴向收缩和体积变化成线性关系。Hernandez, Pavon,和 Garcia提议,水分含量作为食物缩水的一个作用,它成改线关系。 从上述提及的调查 ,明显可见,水分含量和材料的物理性能之间有很大的关系。但是,人们认识到,相关的体积减少并不一定呈现出水分蒸发数量 的相应的正相关关系。. 然而 ,这各缩水 走势对于各种各样的系统来说,是有很大 区别的,它们依赖于材料类型,细胞特征,组织结构 ,和工作条件。本论文呈现出一些胡萝卜在惰性介质流化床干燥剂的实验研究结果。也呈现了关于根性蔬菜在流化床干燥剂作用下的收缩反应的细节。2. 工作操作介绍这个锅,是设计来用来与惰性微粒一起烘干的流化床,选择胡萝卜作为烘干的产品,用以避免周期性的实用性问题。它整年都有所收成,并且 产量和消量都 很高。样品裁成圆柱状烘干,比例为86D612:5 mm and L=DP5,种蔬菜含有90%的天然水分,在烘干过程中,它保持 原来的形状。虽然原始的尺寸在烘干过程中改变了,但是不能忽略。适当大小的烘干机是用来做烘干实验的。实验装置原理图如图表1所示。这个烘干机是一种命名法。柱形的派热克斯玻璃装有有气孔的金属片,作为空气分配器。 高压空气源提供了干燥空气 。用调压器来使干燥空气减少到一个适合的气压。空气通过转子流量计进入,然后被已控制的电加热器加热。温度控制器用来调节干燥空气的温度,湿度由测得的干燥的湿球温度决定。做这个实验是用于获得干燥过程和时间变化曲线的数据。 操作变量是温度,干燥空气的速率,尺寸大小 ,高温载体的类型,干 试样的直径,惰性质子和试样的质量比。 样品在流化床悬浮。样品的水分流失比率由脱机决定。它是这样做的:给样品称重,用握着的绳子,把它放在烘干机旁的电力称上。称重的精确度到0.005克。同时记录下温度,失重,体积测量值。3.结果与讨论为了表现出胡萝卜在不同参数的下缩水的影响,我们在不同的条件下做了一些实验用以证明。 这些操作条件在表1已做总结 。上述等式中的常量是由表2和R2参数中总结的不同的操作条件决定的。3.1空气温度的影响 根据表1,实验2,6-8分析了入风的影响 。表1,胡萝卜 在惰性粒子流化床的操作条件。表1.实验装置原理图 从表2可见,实验1的常量和温度之间没有实在的联系。如表2所示,空气温度对胡萝卜缩水没有影响。3.2样品直径的影响 实验16-18的结果可以用来分析当样品直径为eV =V0T时的影响 。我们可以 看到,A 是一个固定的常量,而B根据样品直径的减少而稍微减少。但是图3显示 ,样品直径对圆柱形胡萝卜样品的缩水并没有显著的影响 。3.3惰性材料在在与否的影响 为了研究惰性材料的在在与否和惰性材料直径为eV =V0T的影响,我们会用上实验10-12和15的结果。由图4所示,惰性粒子的在在对胡萝卜的缩水并无明显的影响 。以上讨论也可以延伸到由于温度,样品直径和惰性粒子的在在与否而eD=D0T2 and eL=L0T的变化。根据对上述实验数据的分析可知,胡萝卜的缩水可只以X的线性函数表示 ,而没有空气参数的从属,样品直径或者惰性材料。事实上,在烘干过程中水分含量和它的变化,即干燥比率,是缩水的最基本参数。 据发现,研究的另一方面,即,烘干比率随着样品直径的减少、惰性材料导热率的增加,和空气温度的上升而增加,但是惰性 材料的直径和空气速率对烘干比率是没有明显的影响的。同时也发现,惰性 粒子的在在加强了干燥比率。图5和图6表明气流速度和样品直径对于烘干的丝毫的影响。图7表明了直径为12.5mm的胡萝卜样品烘干曲线并显示了惰性材料的类型和在在与否对其的影响。因此 ,我们可以得出这个结论:空气温度,样品直径和惰性材料在在与否的影响在烘干比率中反应出来。图8表示,烘干比率对缩水的影响在不同的温度上。要注意的一点就是,空气湿度对烘干比率有决定性的作用。那就是说,水脱离固体基质的周转率。 这在刚开始的时候可能会相对高一点,它应该会驱使这所谓的“表面硬化”,就是外表的的变硬,反而减少更进一步的烘干比率4. 结论根据等式1和所给的表2的已给值 ,为eV =V0T 获得了一些等式。通过在一个图表上绘测所有的等式 然后和表2比较他们常量的物理值,由此可得出,每个常量计算值都相同,因此,常量的平均值可以被应用。相应的,平均常量可以用来作eD=D0T2 and eL=L0的等式 。 因此,所有的统计可以用来计算这个公式:eV =V0T, eD=D0T2 and eL=L0T和另一组实验数据之间相关联系的比较。两者的统一协调显示了所提议的的正确性。表3显示了源于4、6之间相关性的应用的最大的和平均的误差百分比,而不是原始在表2给的给定值Shrinkage of carrots during dryingin an inert medium fluidized bedM.S. Hatamipour*, D. MowlaDepartment of Chemical Engineering, Shiraz University, Shiraz, I.R. IranReceived 3 November 2001; accepted 4 March 2002AbstractAgricultural food products and specially root vegetables undergo several physical and structural modifications during the dryingprocess. Shrinkage of root vegetables during drying is important not only from the viewpoint of material end-use but also forsimulation problems. In this paper the shrinkage of root vegetables is studied in a pilot-scale, inert medium fluidized bed dryer.Cylindrical carrot samples were utilized as the test media, providing simulants for high moisture content food systems. The effects ofvarious parameters such as air temperature, air humidity, sample diameter, sample initial moisture content, existence of inertparticles and air velocity were investigated. It was found that the shrinkage of root vegetables during drying in a fluidized bed couldbe well correlated with moisture content of the sample during drying. Air velocity, temperature and presence of inerts did not showsignificant effects on shrinkage in this system.? 2002 Elsevier Science Ltd. All rights reserved.Keywords: Shrinkage; Fluidized bed drying; Inert medium fluidized bed; Heat carrier1. IntroductionThe drying process is one of the most importantprocesses in food engineering. In most industrial pro-cesses at least one drying step exists, which means theremoval of relatively small amounts of water or otherliquid from the solid material to reduce the content ofresidual liquid to an acceptable low value. Simultaneoustransfer of mass from the surface and heat to the surfaceand into the material, hydrodynamics of the movementof particles in the dryer, different mechanisms of mois-ture transport within the solid material, and shrinkageare some of problems associated with drying of foods.Various methods of drying have been developed forsolids, and each method has its own characteristics.Considering the thermal efficiencies of the equipment,fluidized bed dryers are among the most efficient and aresuitable for a variety of drying applications (Strumillo &Kudra, 1996).Any attempt to characterize drying behaviour mustinevitably address the physical parameters of the mate-rial such as shrinkage and density. Foodstuffs are knownto undergo volumetric changes upon water loss whichare expressed as shrinkage. Such modifications, occur-ring continuously during the drying process, affect thephysical properties of the solids, as well as the transportphenomena properties.Kilpatrick, Lowe, and Van Arsdel (1955) proposed asimple empirical equation which formulates a relationbetween variations in the surface area and moisturecontent of root vegetables during convective tunnel dry-ing. The proposed correlation requires a prior knowledgeof the initial moisture content and density of the driedmaterial. Application to the early stages of drying re-vealed that the shrinkage volume was approximatelyequal to the volume of evaporated water.Suzuki, Kiyoshi, Hasegawa, and Hosaka (1976) mea-sured the shrinkage of root vegetables occurred duringdrying. They explored the application of the aforemen-tioned model, and further attempted to correlate theexperimental data with three postulated models; uni-form drying, core drying and semicore drying. In theuniform drying model, shrinkage is assumed to be equalto the volume of the water lost by evaporation, duringall stages of drying. This model results in two equations,the first requires equilibrium moisture content and bulkdensity, while the second requires the initial moistureJournal of Food Engineering 55 (2002) 247252/locate/jfoodeng*Corresponding author.E-mailaddresses:hatamishirazu.ac.ir(M.S.Hatamipour),dmowlashirazu.ac.ir (D. Mowla).0260-8774/02/$ - see front matter ? 2002 Elsevier Science Ltd. All rights reserved.PII: S0260-8774(02)00082-1content and the bulk density of the material. The coreand semicore models both require the initial and equi-librium values for moisture content and bulk density.Lozano, Rotstein, and Urbicain (1983) developedtwo generalized correlations for prediction of water lossbased on the bulk shrinkage coeffeicient of fruits andvegetables. The first correlation was established on thebasis of foodstuffcomposition and the second correla-tion, which was a modification of the first one, was es-tablished for prediction of the final bulk shrinkagecoefficient with only a knowledge of the initial moisturecontent of the sample. The latter model provided anadequate evaluation of their experimental data.Lang, Sokhansanj, and Rohani (1994) and Mulet(1994) used linear functions to relate shrinkage with themoisture content.Ratti (1994) proposed that the shrinkage charac-teristics of potatoes, apples and carrots are not only afunction of moisture content, but also depend on theoperating conditions and sample geometry. He reportedthat increasing of air velocity reduces the extent of appleand potato shrinkage significantly; but air temperature,air humidity, and sample configuration render a negli-gible influence.Madamba, Driscoll, and Buckle (1994) found thatshrinkage of garlic during drying is fiber oriented anddifferent from the reported isotropic shrinkage of fruitsand vegetables. They reported the power of the volumeratio as 0.448 instead of 2/3, which was reported earlierby Suzuki et al. (1976).Zogzas, Maroulis, and Marinous-Kouris (1994) re-ported independence of shrinkage characteristics onthe temperature and humidity of drying air. Wang andBrennan (1995) reported a greater degree of potatoshrinkage during low temperature air-drying.Sjoholm and Gekas (1995) correlated the volumechange of apple upon drying linearly with water content.Achanta, Okos, Cushman, and Kessler (1997), basedon a thermomechanical theory, studied the transport ofmoisture in shrinking food gels during drying. Theyconcluded that for a long cylindrical gel, r=r02is alinear function of moisture content.McMinn and Magee (1997) reported a linear cor-relation for shrinkage with moisture content and airtemperature during drying of cylindrical potato samplesin a tunnel dryer.Park (1998) reported that shrinkage of material dur-ing drying is a linear function of linear dimension andmoisture content.Zhou, Mowla, Wang, and Rudolph (1998) reported alinear relation for axial contraction and volume changeof cylindrical carrots during the drying in a fluidized bedwith energy carriers.Hernandez, Pavon, and Garcia (2000) proposed alinear relation for shrinkage of foods as a function ofmoisture content.It is evident from the foregoing surveys that there isa strong relation between moisture content and physi-cal properties. However, it is recognized that the asso-ciated volume reduction does not always present adirect correlation with the amount of water evaporated.Rather, the shrinkage behaviour is different for varioussystems, dependent on the material type, the charac-teristic cell and tissue structure, and also operatingconditions.This paper, which represents some of the results of anexperimental investigation on drying of carrots in aninert medium fluidized bed dryer, presents details for theprediction of shrinkage behaviour of root vegetablesduring drying in fluidized bed dryers.2. Present workIn this wok, which was designed for drying of agro-food products in a fluidized bed dryer with some inertparticles, carrot was chosen as the drying product toavoid seasonal availability problems; it is harvestedthroughout all the year, and its production and con-sumption are high. Samples were cut into cylinders with86D612:5 mm and L=DP5 for drying. This vegetablehas a natural moisture content about 90% and duringdrying it maintains its shape; although the size changeoriginated by the great water loss during the process,cannot be ignored.A pilot-scale dryer was used for performing the dry-ing experiments. The schematic diagram of the experi-mental apparatus is shown in Fig. 1. The dryer was aNomenclatureA, A0, A00constants in Eqs. (1)(3)B, B0, B00constants in Eqs. (1)(3)Ddiameter of cylindrical carrot sample (mm)ddiameter of inert material (mm)D0initial diameter of cylindrical carrot sample(mm)Llength of cylindrical carrot sample (mm)L0initial length of cylindrical carrot sample(mm)Vvolume of cylindrical carrot sample (mm3)V0initial volume of cylindrical carrot sample(mm3)248M.S. Hatamipour, D. Mowla / Journal of Food Engineering 55 (2002) 247252cylindrical Pyrex column equipped with a porous plateas air distributor. Drying air was supplied from a high-pressure air source. The pressure of drying air wasreduced to a suitable pressure by using a pressure reg-ulator. Air was passed through a rotameter and thenheated by a controlled electrical heater. A temperaturecontroller was used for regulating the temperature ofdrying air; and the humidity was determined by mea-suring the dry and wet bulb temperatures of the dryingair.Experiments were performed to obtain data for dry-ing curves with time. The operating variables weretemperature and velocity of drying air, size and type ofheat carrier, diameter of the drying sample, mass ratioof inert to drying sample, and drying time.The sample was suspended in the fluidized bed. Therate of water loss from the sample was determined off-line. This was done by weighing the sample, with theholding string, on an electric balance placed next to thedryer. The accuracy of the weighing was ?0.005 g.Temperature, weight loss, and dimension measurementswere recorded simultaneously.3. Results and discussionIn order to show the effects of various parameters onthe shrinkage of the carrot, several experiments werecarried out under different operating conditions. Theseoperating conditions are summarized in Table 1. Foreach experiment, the changes in V =V0, D=D02andL=L0 were determined at various moisture contents(X).Analysis of experimental data revealed that changesin V =V0 and D=D02during the drying of cylindricalcarrot samples, in a fluidized bed with inert heat carriers,could be well correlated as linear functions of moisturecontent of the samples. Although the axial contraction,L=L0could be represented as a linear function of X, itcan be better correlated as a logarithmic function of X.V =V0 AX B1D=D02 A0X B02L=L0 A00lnX B003Different constants in the above equations were de-termined for various operating conditions and aresummarized in Table 2 along with the R2parameter. Theeffects of various parameters on the shrinkage are out-lined as follows.3.1. The effect of air temperatureReferring to Table 1, the results of experiments nos.2, 68 were used to analyse the effect of inlet airTable 1Operating conditions for drying of carrots in a fluidized bed of inert particlesExp. no.Air flow rate(l/min)Diameter ofsample (mm)Length ofsample (mm)Inlet air tem-perature (?C)Diameter ofinerts (mm)Type of inertAmount of inert(kg)165012.564.4602.7Glass0.500250012.560482.7Glass0.850360012.561.5482.7Glass0.850460012.561.1582.7Glass0.850560012.562.2482.7Glass0.850650012.562.7602.7Glass0.850750012.562.6702.7Glass0.850850012.560.7402.7Glass0.850960012.561702.7Glass0.4001060012.561.370No inert1160012.563.1702.7Glass0.8501260012.560.3705Glass0.6001368012.561.2705Glass0.6001468012.559.5706.5Glass0.6001560012.561.7706.5Glass0.6001666012.563.7702.7Glass0.40017660838.5702.7Glass0.4001866010.555.9702.7Glass0.400Fig. 1. Schematic diagram of the experimental apparatus.M.S. Hatamipour, D. Mowla / Journal of Food Engineering 55 (2002) 247252249temperature on V =V0. As can be seen from Table 2,there is no meaningful relation between the constants ofEq. (1) with temperature. Fig. 2 shows that air temper-ature does not affect the shrinkage of carrots.3.2. The effect of sample diameterThe results obtained in experiments nos. 1618 wereused to analyse the effect of sample diameter on V =V0.As it can be seen, A is fairly constant and B decreasesslightly with decreasing sample diameter, but Fig. 3shows that sample diameter does not have a pronouncedeffect on shrinkage of cylindrical carrot samples.3.3. The effect of presence of inert materialFor studying the effect of presence of inert mate-rial and also the effect of inert material diameter onV =V0, the results of experiments nos. 1012 and 15were used. As can be seen in Fig. 4, the presence ofinerts does not have any appreciable effect on shrinkageof carrots.The above discussion can also be extended for vari-ations of D=D02and L=L0 with temperature, samplediameter and presence of inerts.The above analysis of the experimental data showedthat shrinkage of carrots could be represented only asa linear function of X, without any dependency of theparameters on temperature, sample diameter, or inertmaterial. In fact, the moisture content and its variationduring drying, that is rate of drying, is the basic pa-rameter for determination of shrinkage. It was found inanother part of this research that, the rate of dryingincreases with decreasing sample diameter, increasingthe inert material thermal conductivity, and increasingair temperature, but the inert material diameter and airvelocity have no significant effects on the rate of drying.Also, it was found that the presence of inert particlesenhances the rate of drying (Hatamipour & Mowla, inpress). Figs. 5 and 6 show the effects of air velocity andsample diameter on drying rate, and Fig. 7 representsTable 2Calculated values of constants for Eqs. (1)(3)Exp. no.V =V0(Eq. (1)D=D02(Eq. (2)L=L0(Eq. (3)ABR2A0B0R2A00B00R260.09120.08580.99480.08410.14880.99270.08390.81700.978070.09340.07220.99620.08890.12320.99170.08480.80520.986180.09540.05670.99690.09060.11260.99450.10070.77190.9974100.09690.06100.99540.09400.09710.99340.07770.82260.9913110.09240.04380.99810.08670.09770.99630.10940.76530.9652120.09470.06120.99820.09090.10590.99610.07760.81770.9678150.09220.08200.99730.08750.12780.99610.06670.85030.9825160.08910.10810.99750.08390.15820.99620.07550.83290.9897170.09070.09870.99550.08290.16760.99450.06860.84580.9839180.09100.10570.99470.08460.17020.99150.09690.83840.9908Fig. 2. Effect of inlet air temperature on shrinkage of carrots.Fig. 3. Effect of sample diameter on shrinkage of carrots.Fig. 4. Effect of presence of inerts and inert material diameter onshrinkage of carrots.250M.S. Hatamipour, D. Mowla / Journal of Food Engineering 55 (2002) 247252drying curve for 12.5 mm carrots, showing the effects ofpresence of inert material and inert type.Therefore, it can be concluded that the effects of airtemperature, sample diameter and presence of inertshave been reflected in drying rate. Fig. 8 shows the effectof drying rate on shrinkage at various temperatures.It must be noted that air humidity has a decisive in-fluence on the rate of drying, that is, the velocity atwhich water leaves the solid matrix. Should it be rela-tively high at the beginning, it should provoke the socalled case hardening, that is the hardening of theouter surface, reducing in turn the further rate of dryingand consequently the volume reduction. Oppositely, asoft drying would lead to a more light deformation. Ingeneral, the whole cellular structure behaves differentaccording to the velocity at which water leaves the cell.4. ConclusionBased on Eq. (1) and the given values in Table 2 for Aand B, several equations were obtained for V =V0. Byplotting all of the equations on a single graph andcomparing the values of constants in Table 2, it can beseen that the calculated values of the constants are closeto each other and thus the average value of each con-stant can be used. Similarly, average constants can beused for equations obtained for D=D02and L=L0.Therefore, the following correlations can be used for thecalculation of V =V0, D=D02and L=L0:V =V0 0:0927X 0:077524D=D02 0:08741X 0:130915L=L0 0:08145lnX 0:816716Fig. 5. Effect of air velocity on drying rate (exp. 7, 11, 12, 13, 14, 15).Fig. 6. The effect of sample diameter on drying rate (exp. 16, 17, 18).Fig. 7. Drying curve for carrot (dp 2:7 mm, glass, Tair 70 ?C,Ds 12:5 mm, Uair 2:36 m/s).Fig. 8. The effect of drying rate and air temperature on shrinkage.Fig. 9. Comparison of proposed correlation for V =V0with experi-mental data.M.S. Hatamipour, D. Mowla / Journal of Food Engineering 55 (2002) 247252251Figs 911 show a comparison of correlations (4)(6)with another sets of experimental data. The good agree-ments show the validity of the proposed correlations.Table 3 shows the maximum and average percent errorsoriginated from the use of the correlations (4)(6), in-stead of the original correlations with values given inTable 2.ReferencesAchanta, S., Okos, M. R., Cushman, J. H., & Kessler, D. P. (1997).Moisture transport in shrinking gels during saturated drying.AIChE J., 43, 21122122.Hatamipour, M. S., & Mowla, D. Experimental investigation of dryingof carrots in a fluidized bed with energy carrier, in press.Hernandez, J. A., Pavon, G., & Garcia, M. A. (2000). Analytical so-lution of mass transfer equation considering shrinkage for modelingfood-drying kinetics. J. Food Eng., 45, 110.Kilpatrick, P. W., Lowe, E., & Van Arsdel, W. B. (1955). Tunneldehydrators for fruit and vegetables. In W. B. Van Arsdel (Ed.),Advances in Food Research, Vol. 6 (pp. 313372). New York:Academic Press.Lang, W., Sokhansanj, S., & Rohani, S. (1994). Dynamic shrinkageand variable parameters in BakkerAr
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。