超级电容器电动葫芦再生制动策略.docx

【机械类毕业论文中英文对照文献翻译】超级电容器电动葫芦再生制动策略

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共31页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:77693615    类型:共享资源    大小:595.48KB    格式:RAR    上传时间:2020-05-07 上传人:柒哥 IP属地:湖南
6
积分
关 键 词:
机械类毕业论文中英文对照文献翻译 机械类 毕业论文 中英文 对照 文献 翻译 超级 电容器 电动葫芦 再生制动 策略
资源描述:
【机械类毕业论文中英文对照文献翻译】超级电容器电动葫芦再生制动策略,机械类毕业论文中英文对照文献翻译,机械类,毕业论文,中英文,对照,文献,翻译,超级,电容器,电动葫芦,再生制动,策略
内容简介:
附录1:外文翻译超级电容器电动葫芦再生制动策略摘要:全球范围内对环境问题的关注越来越多,使得动力设备的节能成为重中之重。为提高电动葫芦的能量效率和行驶范围,设计并讨论了再生制动系统。该系统采用独特的超级电容器方式进行能量储存系统。双向新娘DC / DC转换器调节流过超级电容器的电流流动有两种模式:升压和降压,取决于流向。为了在超级电容器上提供恒定的输入和输出电流,该系统使用双比例积分(PI)控制策略来调节PWM到DC / DC转换器的占空比。还研究了永磁同步电机(PWSM)驱动系统。采用空间矢量脉宽调制(SVPWM)技术,以及双闭环矢量控制模型,详细分析了PMSM特性。该再生制动系统的总体模型和控制策略最终在MATLAB和Simulink环境下构建和模拟。建立了一个测试平台来获得实验结果。结果分析表明,该系统可以恢复一半以上的重力势能。仿真和实验结果证明了超级电容接口电路和PMSM的SVPWM策略的双PI控制策略的有效性。1引言*随着气候变化和能源危机的问题在全世界越来越受到重视,工业化国家加大了减少化石燃料使用的努力。这一努力中最重要的步骤之一是将汽车和建筑车辆的电源从热机转变为可变速度电机。变速电机驱动系统不仅具有更高的效率,还可以利用风力发电和太阳能等可再生能源产生的电力。变速马达驱动器具有自己的技术问题,但驱动中的快速加速和减速作为应用经常要求,将电源置于短暂但电压波动较大的地方。简易解决方案是在变频器直流母线上增加制动电阻,但会导致相当大的浪费。一个更为常见和复杂的解决方案是整合一个能量储存系统(ESS)进入系统以吸收能量,同时制动并在需要时重新生成。能量储存系统1-8已经在电动车(EV),混合动力电动汽车(HEV)和插电式混合动力汽车中应用。传统上,电气ESS拥有广泛的技术,并具有各种形式,例如电化学系统(例如电池,流通池),动能储存(例如飞轮)和潜在能量存储(例如抽水电,压缩空气)9。超级电容器的开发10-12为下一代纯电动车提供了吸引人的选择。最近的研究成果提出了在再生制动系统中使用超级电容器的方法。 WEI和Wang 13提出了三种典型配置的性能分析和比较,以阐明不同拓扑的优缺点。徐和谢14将其研究纳入EV / HEV ESS系列电容器的电压均衡方法。一个新的电池/由CAO和EMADI 15为EV,HEV和插电式HEV提出了超级电容器混合能量存储系统(HESS),使用更小的DC / DC转换器来维持超级电容器的电压。 YAN和PATTERSON 16提出了一种新颖的电源管理方案,以实现电动车辆的高性能和降低成本,实现短车队应用。采用锌 - 溴电池为普通驱动提供连续功率,同时使用超级电容器在加速期间提供峰值功率需求,并在减速期间存储再生制动能量。 EV电动机在恒定转矩模式下以低于基本速度的速度运行,并且在恒定功率模式下以超过基本速度的速度运行,以实现高效率和低成本。 AHMED和CHEMIELEWSKI 17已经建立了一个模型,旨在模拟燃料电池车辆中预期的负载,包括直流电机,DC / DC转换器和用于峰值剃刮和再生制动的可充电电池。该模型还包括车辆的运动学,因此可以连接到标准化的驱动循环场景。 LU和CORZINE 18引入了一套新的方法,将超级电容器组直接集成到用于大型车辆推进的级联多电平逆变器中。这个想法是用超级电容器替代常规直流链路电容器,以便结合储能单元和电机驱动器。这些研究已经证明使用超级电容器作为混合动力车辆中的电池的可行补充存储装置来延长电池寿命。超级电容器被认为是辅助电源,其可以在启动期间辅助燃料电池和燃料电池动力车辆的快速功率瞬变。目前,没有关于应用于起重设备的基于超级电容器的ESS的文献研究。在这项研究中,将采用一种仅用于电动葫芦的超级电容式储能系统,与传统的汽车再生制动系统的超级电容器/电池混合动力方式不同。超级电容式储能系统可以大大简化电路结构,扩大控制总线。首先将分别讨论永磁同步电机(PMSM)和DC / DC转换器的控制方案。然后基于DSP的控制系统是基于控制策略和数字信号处理技术开发的。随后研究了整体系统结构和控制策略。本实验开发并构建了再生制动系统的实施方案。最后,比较了仿真结果和实验结果,分析了整个能量回收系统的效率。2超级电容器储能系统2.1 DC / DC转换器的控制策略具有充电率高,效率高,功率密度高,循环寿命长,无维护19优点的电动葫芦作为电动葫芦的储能。超级电容器作为储能单元通过DC / DC转换器集成到逆变器直流链路中。根据输入输出条件,DC / DC转换器可以作为升压或降压转换器工作。图。 1显示了DC / DC转换器升压运行的PSIM仿真模型。升压操作用于驱动PMSM和放电超级电容器。IGBT2在受控的占空比下接通和关断,以将所需的能量从超级电容器传递到DC链路。当IGBT2导通时,从超级电容器中取出能量并存储在电感器L1中。 IGBT2关断时,能量超级电容器具有充电率高,高效率,高功率密度,长循环寿命,无需维护19,作为电动葫芦的储能。超级电容器作为储能单元通过DC / DC转换器集成到逆变器直流链路中。该DC / DC转换器可以根据输入输出条件作为升压或降压转换器工作。图。 1显示了DC / DC转换器升压运行的PSIM仿真模型。升压操作用于驱动PMSM和放电超级电容器。 IGBT2以受控的工作周期接通和关断,以将所需的能量从超级电容器传送到DC链路。当IGBT2接通时,从超级电容器中取出能量并存储在该电容器中电感L1。当IGBT2关断时,L1中的电能通过D1传输到直流母线。当放电超级电容器时,转换器用作刚性电压源到电动机控制器。升压转换器自动调节电压,然后获得稳定的输出电压。确保超级电容器工作在安全,可靠和高效的条件下,采用双PI闭环。如图所示。如图2所示,DC / DC转换器的工作原理是用于在再生制动期间对超级电容器充电。在降压操作期间,转换器将能量从直流链路传输到超级电容器。该操作通过对IGBT1的受控操作来实现。当IGBT1接通时,能量从链路总线传递到超级电容器,电感L1存储部分能量。当IGBT1关断时,存储在电感L1中的剩余能量通过D2转移到超级电容器中。双PI闭环控制策略用于调节IGBT的PWM占空比。由于电感线圈,续流二极管和滤波电容器的影响,直流/直流转换器电流随着IGBT周期性导通和关断而成为脉动电流,但输出电流保持连续平稳。如果负载是电阻性的,输出直流电压也保持连续平稳。 DC / DC转换器保持逆变器直流母线的恒定电压,而超级电容器电压具有宽的变化范围。2.2 DC / DC转换器的仿真和实验结果为了评估再生制动能量系统控制原理的有效性和可用性,分别在降压和升压运行条件下建立了DC / DC转换器的系统PSIM仿真模型。升压和降压转换器的仿真结果如图1所示。图3(a), 3(b)。结果表明,当前25 A时,超级电容器的电压逐步上升或下降8 V。电动机空载实验在超级电容器的循环寿命期间进行。图。图4(a)图图4(b)显示了实验结果,包括电机速度,电容器电流,直流母线电压和超级电容器电压。数据显示,在一个循环中,放电时间约为170秒,充电时间约为45秒。超级电容放电时,直流母线电压约为570V,充电时为540V。超级电容器的最大电压为300V,最小电压为200V。如图3(a)所示,超级电容器的放电电流比较平滑,因为电机是电阻的。3矢量控制的PMSM3.1 PMSM的数学建模永磁同步电机(PMSM)由于功率密度高,效率高,转矩惯量大,运行可靠等特点而得到广泛应用。该PMSM工作在发电机或电机模式。操作模式由定子和转子产生的磁场的旋转速率偏差决定(电机模式为正,发电机模式为负)。本文讨论的PMSM具有以下假设:核心饱和度和机器绕组漏电感被忽略;气隙中的磁势假定为正弦分布;磁场中的高次谐波可以忽略不计。根据坐标变换原理,数学PMSM的模型可以通过旋转参考系(d-q参考系)中的这些方程表示:3.2 SVPWM原理空间矢量脉宽调制(SVPWM)技术广泛应用于逆变器20-21。当定子通量空间矢量由三相正弦电压提供时,定子磁通空间矢量以恒定的速度旋转。同时,通量矢量的运动形成一个环形空间旋转场。电压矢量也是如此。当磁通矢量在空间中旋转一段时间时,电压矢量也沿着磁通圆的切线旋转一段时间。因此,其轨迹与通量圆相符。 SVPWM是一种使用八个空间电压矢量产生接近定子的磁通圆的技术电机的磁通圆。空间矢量脉宽调制技术用于通过电压源逆变器用计算出的定子电压空间矢量激励电机。本文采用空间矢量脉宽调制的两个闭环矢量控制模型。图。图5给出了所提出的控制方案的框图。4系统结构4.1能源管理战略电动葫芦经常用于施工。 如图所示。 6,具有再生能量系统的电动葫芦主要由超级电容器,DC / DC转换器,编码器,三相逆变器,PMSM,微处理器DSP,检测系统和硬件保护组成。编码器检测PMSM速度和方向。霍尔传感器检测超级电容器和直流母线的电压,电流和温度。微处理器DSP不仅调整降压和升压操作之间的DC / DC转换器,还可以根据传感器信号控制电机速度和方向。如果温度或电流为自动,保护系统将自动切断电路电源管理策略如下:当负载下降时,电机作为发电机工作。在此过程中,如果超级电容器电压小于300 V,则DC / DC转换器将工作在降压运行,并对超级电容器充电,直到超级电容器电压高达300 V.然后超级电容器将被切断,电阻制动将被采纳。然而,在起重负载过程中,如果超级电容器电压高于200 V,则DC / DC转换器将在升压操作中工作,并对超级电容器进行放电。但如果超级电容器电压小于200 V,电机将通过AC 380 V电源供电,以取代超级电容器作为能源。为了实现安全,可靠和高效的运行,超级电容器以各种恒定电流在20A下进行充放电,电压范围为200-300V。双向DC / DC转换器的工作模式取决于内部超级电容器的能量和PMSM的工作站。4.2再生制动系统仿真为了评估这种再生制动系统的可行性,基于MATLAB / Simulink进行仿真,如图7电机电路采用直接转矩控制(DTC)感应电机驱动,在调速时具有空间矢量脉宽调制。感应电动机是由PWM电压源逆变器馈电。速度控制回路使用PI控制器为DTC块产生磁通和转矩参考。 DTC块计算电机扭矩和通量估计并将其与各自的参考值进行比较。然后由独立的PI调节器控制转矩和通量,计算参考电压矢量。然后通过空间矢量调制方法控制电压源逆变器,以便输出所需的参考电压。电气系统还包含一个DC / DC转换器。这里,DC / DC转换器将超级电容器适配到直流母线。根据超级电容器内部能量和PMSM工作状态,DC / DC转换器可以作为升压或降压转换器工作。在t = 0时刻,电机转速设定为1500转/分钟。然后,在t = 20s时,电动机施加-1 500 r / min的负参考速度斜坡。相应地,首先提起负载并且超级电容器放电。然后降低负载,并对超级电容器充电。超级电容器信号(电压和电流),直流链路信号(电压)和电机信号的仿真结果如图1所示。 8, 9。如图。图8(a)图如图8(c)所示,当负载上升时,超级电容器的电压从250V下降到200V。然后电压保持恒定直到PMSM反向。随后,在负载下降的过程中,超级电容器电流约为10A,电压开始上升,在t = 40s时达到244V。但是,如果降额时超高电压电压低于200 V时起升负载或高于300 V,则超级电容器将从直流母线断开。 图11显示了实验结果,包括电机转速,直流母线电压,瞬时电流和超级电容器在10A充放电电流下的实际电压。如图。如图11所示,电机在前20秒内以1500转/分钟运行,然后改变方向,速度升至1500转/分钟。当超级电容器充电时,逆变器直流母线的电压为600V,超级电容放电时为570V负载越低,超级电容器的电压从200V升高到232V,充电电流约为10 A.负载上升时,超级电容放电电流为-10A。超级电容器的电位能方程如下:载荷的重力势能为G E = mgh,总机械效率为mh= 0.8。根据实验结果,从机械能到电势能的能量转换效率为eh= 0.83。能量回收率为h= 0.65。图。图12示出了超级电容器的5A放电电流的实验结果。从机械能到电位能的能量转换效率为0.72。能量回收率为0.58。比较图12,如图11所示,回收能在10 A时比5 A.参考文献1 YANG Ming-Ji, JHOU Hong-Lin. A cost-effective method of electric braking with energy regeneration for electric vehiclesJ. IEEE Transactions on Industrial Electronics, June, 2009, 56(6): 2 2032 212.2 ROTENBERG D, VAHIDI A V. Ultracapacitor assisited powertrains: modeling, control, sizing, and the impact on fuel economyC/2008 American Control Conference, Washington, USA, June 1113, 2008:981987.3 AWERBUCH J J,SULLIVAN C R. Control of ultracapacitor-battery hybrid power source for vehicular applicationsC/IEEE Energy 2030 Atlanta, Georgia, USA, November 1718, 2008.4 BANVAIT H, ANWAR S. A Rule-based energy management strategy for plug-in hybrid electric vehicleC/2009 American control conference, Hyatt Regency Riverfront, St. Louis, MO, USA, June 1012, 2009: 3 9383 943.5 SUN Hui, JIANG Jihai. Parameters matching and control method of hydraulin hybrid vehicle with secondary regulation technologyJ. Chinese Journal of Mechanical Engineering, 2009, 22(1): 5763.6 MORENO J, ORTUZAR M E. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networksJ. IEEE Transactions on Industrial Electronics, 2006, 53(2): 614623.7 MILLER J M, BOHN T. Why hybridization of energy storage is essential for future hybrid, plug-in and battery electric vehiclesJ. IEEE, 2009: 2 6142 620.8 XIONG Weiwei, YIN Chengliang. Series-parallel hybrid vehicle control strategy design and optimization using rea-valued genetic algorithmJ. Chinese Journal of Mechanical Engineering, 2009,22(6): 862868.9 BAKER J. New technology and possible advances in energy storageJ. Energy Policy, 2008, 36: 4 3684 373.10 BERTRAND J, SABATIER J. Fractional non-linear modelling of ultracapacitorsJ. Commun Nonlinear Sci Numer Simulat, 2010,15:1 3271 337.11 DO Y J, YOUNG H K. Development of ultracapacitor modules for 42-V automaotive electrical systemJ. Journal of Power Sources, 2003, 114: 366373.12 MAJOR J. Hybrid shuttle bus using ultracapacitorsJ. IEEE, 2005:275278.13 WEI Tongzhen, WANG Sibo. Performance analysis and comparision of ultracapacitor based regenerative braking systemC/ Proceeding of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices,Chengdu, China, September 2527, 2009: 3 4053 410. storage system for electric, hybrid and plug-in hybrid electric vehiclesJ. IEEE, 2009: 941945.16 YAN Xinxiang, PATTERSON D. Novel power management for high performance and cost reduction in an electric vehicleJ. Renewable Energy, 2001, 22: 177183.17 AHMED S, CHMIELEWSKI D J. Load characteristics and control of a hybrid fuel cell / battery vehicleC/ 2009 American control conference, Hyatt Regency Riverfront, St. Louis, MO, USA, June 10-12, 2009: 2 6542 659.18 LU Shuai, CORZINE K. Unique ultracapacitor direct integration schemein multilevel motor drives for large vehicle propulsionJ. IEEE transactions on vehicular vehicular technology, July 2007, 56(4): 1 5061 515.19 DIXON J W, ORTUZAR M E. Ultracapacitor +DC-DC converters in regenerative braking systemJ. IEEE AESS Systems Magazine, 2002: 1621.20 MOHAMED Y A R I. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observerJ. IEEE 附录2:外文原文Regenerative Braking Strategy for Motor Hoist by UltracapacitorAbstract:Rising concern in environmental issues on global scale has made energy saving in powered equipment a very importantsubject. In order to improve the energy efficiency and driving range of a motor hoist, regenerative braking system is designed anddiscussed. The system takes a unique ultracapacitor-only approach to energy.storage system. The bi-directional bride DC/DC converterwhich regulates current flow to and from the ultracapacitor operates in two modes: boost and buck, depending on the direction of theflow. In order to provide constant input and output current at the ultracapacitor, this system uses a double proportional-integral (PI)control strategy in regulating the duty cycle of PWM to the DC/DC converter. The permanent magnet synchronous motor (PWSM)drive system is also studied. The space vector pulse width modulation (SVPWM) technique, along with a two-closed-loop vector controlmodel, is adopted after detailed analysis of PMSM characteristics. The overall model and control strategy for this regenerative brakingsystem is ultimately built and simulated under the MATLAB and Simulink environment. A test platform is built to obtain experimentalresults. Analysis of the results reveals that more than half of the gravitational potential energy can be recovered by this system.Simulation and experimentation results testify the validity of the double PI control strategy for interface circuit of ultracapacitor andSVPWM strategy for PMSM.1 Introduction*As issues of climate change and energy crisis aregathering more and more attention worldwide,industrialized nations have increased effort to reduce fossilfuel usage. One of the most significant steps in this effort isto change the power source of automobiles andconstruction vehicles from heat engines to variable speedmotors. Not only is the variable speed motor drive systemgenerally more efficient, it can also utilize electric powergenerated from renewable sources such as wind and solar.Variable speed motor drive does have technical problem ofits own, however: quick acceleration and deceleration inthe drive, as the application often requires, put the powersource under transient but large voltage fluctuations. Thecheap and easy solution is to add a braking resistor to theinverter DC link, but it leads to considerable waste. A morecommon and sophisticated solution is to incorporate anenergy storage system (ESS) into the system to absorb theenergy while braking andregenerate it when needed.Energy storage system18 has seen applications inelectricvehicles (EV), hybrid electric vehicles (HEV) and plug-inhybrid electric vehicles.Traditionally electrical ESS embraces a broad range oftechnologies and comes in a variety of forms, such aselectrochemical systems (e.g. batteries, flow cells), kineticenergy storage (e.g. flywheel) and potential energy storage(e.g. pumped hydroelectric, compressed air)9.The development of ultracapacitor1012 has provided anattractive alternative for the next-generation pure-electricvehicles. Recent research results have proposed manmethods to use ultracapacitors in the regenerative brakingsystem. WEI and WANG13 presented the performanceanalysis andcomparison of three kinds of typicalconfigurations to clarify the advantages and disadvantagesof different topologies. XU and XIE14 devoted theirresearch into the voltage-equalization method for seriesultracapacitors in EV/HEV ESS. A new battery/ultracapacitor hybrid energy storage system (HESS), usinga much smaller DC/DC converter to maintain the voltageof the ultracapacitor, was proposed by CAO and EMADI15for EV, HEV and plug-in HEV. YAN and PATTERSON16presented a novel power management scheme to achievehigh performance and cost reduction in an electric vehiclefor short profile fleet application. Zinc-bromine batteriesare employed to provide the continuous power for normaldriving while ultracapacitors are employed to provide forpeak power demand during acceleration and to stor regenerative braking energy during deceleration. The EV motor operates in constant torque mode at a speed belowthe base speed and in constant power mode at a speed over the base speed for high efficiency and low cost. AHMED and CHEMIELEWSKI17 have built a model aimed at mimicking the load expected in a fuel cell vehicle, including a DC motor, DC/DC converters and a rechargeable battery for peak-shaving and regenerative braking. This model also includes the kinematics of the vehicle, and thus can be connected to standardized drive cycle scenarios. LU and CORZINE18 introduced a new set of methods to directly integrate ultracapacitor banks into cascaded multilevel inverters that are used for large vehicle propulsion. The idea is to replace the regular DC link capacitors with ultracapacitors in order to combine the energy storage unit and motor drive. These researches have all demonstrated the using ultracapacitor as a viable supplementary storage device to batteries in hybrid vehicles to extend the battery life. Ultracapacitor has been considered as an auxiliary power source which can assist the fuel cell during startup and fast power transients of fuel-cell powered vehicles.Currently there has been no documented research on ultracapacitor-based ESS applied to hoisting equipment. In this research, an ultracapacitor-only energy storage system for motor hoist will be adopted, which differs from the traditional vehicle regenerative braking systems ultracapacitor/battery hybrid approach. The ultracapacitoronly energy storage system can simplify the circuit structure and expand the control bus greatly.First, the control schemes for permanent magnet synchronous motor (PMSM) and DC/DC converter will be separately discussed. Then a DSP-based control system is developed based on the control strategy and digital signal processing technique. The overall system structure and control strategy are subsequently studied. An implementation scheme of the regenerative braking system has been developed and built for this experiment. At last, the simulation results and experimental results are compared and the efficiency of the entire energy recovery system is analyzed.2 Ultracapacitor Energy Storage System2.1 Control strategy of DC/DC converterUltracapacitor with the advantages of high charge rate, high efficiency, high power density, long cycle life, no maintenance19, is preferred as the energy storage for motor hoist. The ultracapacitor as energy storage unit is integrated into inverter DC link through a DC/DC converter. The DC/DC converter can work as a boost or buck converter depending on input-output conditions.Fig. 1 shows PSIM simulation model of the boost operation of the DC/DC converter. The boost operation isused for driving PMSM and discharging the ultracapacitor.The IGBT2 is switched on and off at a controlled dutycycle, to transfer the required amount of energy from the ultracapacitor to the DC link. When IGBT2 is switched ON, energy is taken from the ultracapacitor and stored in the inductor L1. When IGBT2 is switched OFF, the energy Ultracapacitor with the advantages of high charge rate,high efficiency, high power density, long cycle life, no maintenance19, is preferred as the energy storage for motor hoist. The ultracapacitor as energy storage unit is integrated into inverter DC link through a DC/DC converter. TheDC/DC converter can work as a boost or buck converter depending on input-output conditions. Fig. 1 shows PSIM simulation model of the boost operation of the DC/DC converter. The boost operation is used for driving PMSM and discharging the ultracapacitor. The IGBT2 is switched on and off at a controlled duty cycle, to transfer the required amount of energy from the ultracapacitor to the DC link. When IGBT2 is switched ON, energy is taken from the ultracapacitor and stored in theinductor L1. When IGBT2 is switched OFF, the energystored in L1 is transferred into DC link through D1. When discharges ultracapacitors, the converter is used as a stiffvoltage source to electric motor controller. The boost converter adjusts voltage automatically and then get asteady output voltage. To ensure that the ultracapacitorworks in a safe, reliable and high efficient condition,double PI closed-loop is adopted.As shown in Fig. 2, the DC/DC converter works as abuck converter, which used for charging the ultracapacitor during regenerative braking. During the buck operation, the converter transfers energy from the DC link to the ultracapacitor. That operation is accomplished by a controlled operation on IGBT1. When IGBT1 is switched on, the energy goes from the link bus to the ultracapacitor, and inductor L1 stores part of this energy. When IGBT1 is switched OFF, the remaining energy stored in inductor L1is transferred into the ultracapacitor through D2. Double PI closed-loop control strategy is used for regulating the duty cycle of PWM of the IGBTs. The DC/DC converter currentbecomes pulsating current as IGBTs periodically turning on and off, however, the output current keeps continuous and smooth, owing to the effect of inductance coil, freewheeling diode and filter capacitor. If the load is resistive, the output DC voltage also keeps continuous and smooth. The DC/DC converter maintains constant voltage of the inverter DC link, whereas the ultracapacitor voltage has wide variation ranges.2.2 Simulation and experiment results of the DC/DC converterTo evaluate the effectiveness and availability of the control principle of the regenerative braking energy system, the system PSIM simulation models of DC/DC converter are established under buck and boost operation condition respectively. The boost and buck converter simulation results are shown in Fig. 3(a) and Fig. 3(b) respectively. The results show that the voltage of ultra-capacitor step up or down 8 V per second at current 25 A.The motor no-load experiment is carried out during a cycle-life of the ultracapacitor. Fig. 4(a)Fig. 4(b) shows the experiment results, including the velocity of motor, theultracapacitor current, DC link voltage and ultracapacitorvoltage. The data shows that in a cycle, the discharging time is about 170 s and the charging time is about 45 s. The DC link voltage is about 570 V while ultracapacitor is discharged, and is 540 V when charged. The maximum voltage of the ultracapacitor is 300 V and the minimum voltage is 200 V. Compared with Fig. 3(a), the discharging current of the ultracapacitor is more smooth, because the motor is resistive.3 Vector-Control for PMSM3.1 Mathematical modeling of PMSMPermanent magnet synchronous motor (PMSM) has been widely used due to its high power density, efficiency, high large torque-to-inertia ratio and reliable operation. ThePMSM operates in either generator or motor mode. The operation mode is dictated by the rotating rate deviation of the magnetic field generated by the stator and rotor(positive for motor mode, negative for generator mode).The PMSM discussed in this paper has these assumptions: the core saturation and machine winding leakage inductance are ignored; the magnetic potential in the air gap is assumed to be in sine distribution; the higher harmonic wave in magnetic field is negligible. According to the coordinate transformation principle, the mathematicmodel of PMSM can be expressed by such equations in the rotating reference frame ( d-q reference frame):3.2 Principle of SVPWMThe Space Vector Pulse Width Modulation (SVPWM) technique is widely used in inverter2021. The stator flux space vector rotates in a constant velocity with invariable amplitude when it is supplied by 3-phase sinusoidal voltage. Meanwhile, the movement of flux vector forms a circula space rotating field. The same is true with voltage vector. When flux vector rotates a period in space, the voltagevector also rotates a period following the tangent line of the flux circle. Therefore, its trajectory coincides with the flux circle. The SVPWM is a technology that uses eight space voltage vectors to generate flux circle approaching statorflux circle of the motor.The space vector pulse width modulation technique is used to excite the motor with the calculated stator voltage space vector via a voltage source inverter. In this paper, two closed-loop vector control model for Space Vector Pulse Width Modulation is adopted. Fig. 5 presents the block diagram of the proposed control scheme.4 System Structure4.1 Energy control strategyMotor hoist is frequently used in construction. As shown in Fig. 6, the motor hoist with regenerative energy system is mainly composed of ultracapacitor, DC/DC converter, encoder, three-phase inverter, PMSM, microprocessor DSP, detection systems and hardware protection.The encoder detects the PMSM speed and direction. The hall sensor detects voltage, current and temperature of the ultracapacitor and DC link. The microprocessor DSP not only adjusts the DC/DC converter between buck and boost operation, but also controls the motor speed and direction on the basis of sensors signals. Protection system will cut off the circuit automatically if the temperature or current istoo high. Power management strategy is as follows: when the load drops, the motor works as a generator. During this process, if the ultracapacitor voltage is less than 300 V the DC/DC converter will work in buck operation and charge the ultracapacitor until the ultracapacitor voltage is up to 300 V. Then the ultracapacitor will be cut off and the electric resistance braking will be adopted. However, during the process of hoisting load, if the ultracapacitor voltage is higher than 200 V, the DC/DC converter will work in boost operation and discharge the ultracapacitor. But if theultracapacitor voltage is less than 200 V, the motor will be fed by AC 380 V power to replace the ultracapacitor as energy sources. To realize a safe, reliable and efficient operation, the ultracapacitor is charged and discharged at various constant current under 20 A and its voltage is in the range of 200300 V. The operating mode of the bidirectional DC/DC converter depends on the internalenergy of ultracapacitor and the working station of PMSM.4.2 Simulation of regenerative braking systemTo evaluate feasibility of this regenerative braking system, simulations are performed based on MATLAB/ Simulink, as shown in Fig. 7.The motor circuit uses a direct torque control (DTC) induction motor drive with space vector pulse width modulation during speed regulation. The induction motor isfed by a PWM voltage source inverter. The speed control loop uses a PI controller to produce the flux and torque references for the DTC block. The DTC block computesthe motor torque and flux estimates and compares them to their respective reference. The torque and flux are then controlled by independent PI regulators that compute a reference voltage vector. The voltage source inverter is then controlled by the space vector modulation method in order to output the desired reference voltage.The electrical system contains also a DC/DC converter. Here, the DC/DC converter is to adapt ultracapacitor to the DC link. The DC/DC converter can work as either boost or buck converter, depending on the ultracapacitor internal energy and the PMSM working state.At time t = 0 s, the motor speed is set at 1 500 r/min. Then a negative reference speed ramp of 1 500 r/min is applied to motor at t = 20 s. Correspondingly, the load is hoisted up first and the ultracapacitor is discharged. Then the load is lowered down and the ultracapacitor is charged. The simulation results of the ultracapacitor signals (voltage and current), DC link signal (voltage) and the motor signals are shown in Fig. 8 and Fig. 9. As Fig. 8(a)-Fig. 8(c) shown, when load goes up, the voltage of ultracapcitor drops down from 250 V to 200 V. Then the voltage keeps constant until the PMSM reverses.Subsequently, in process of the load going down, the ultracapacitor current is approximate to 10 A, voltage start to increase and reaches to 244 V at t = 40 s. But the ultracapacitor will be cut off from the DC link, if the ultacapacitor voltage is below 200 V when hoisting load or above 300 V when lowering load.5 Force Feedback ExperimentsFig. 10 shows the overall views of experimental apparatus. The related parameters and specifications are shown in Table. One cycle of the driving pattern consists of starting from rest, acceleration, high-speed running, inverted running and stop.Fig. 11 shows the experimental results, including the motor speed, DC link voltage, the instantaneous current and actual voltage of the ultracapacitor at 10A charge-discharge current. As the Fig. 11 shows, the motor runs at 1 500 r/min in the first 20 s, then it changes direction and the speed goes up to 1 500 r/min. The voltage of the inverter DC link is about 600 V when the ultracapacitor is charged, as well as it is 570 V when the ultracapacitor is discharged As the load goes lower, the voltage of ultracapacitor rises from 200 V to 232 V and the charging current is about 10 A. As the load goes up, the ultracapacitor discharging current is propinquity to 10 A.The electric potential energy equation of the ultracapacitor is as follows:The gravitational potential energy of the load is G E = mgh and the total mechanical efficiency is m h = 0.8 . According to the experimental results, energy conversion efficiency from the mechanical energy to electric potential energy is e h = 0.83 . The energy recovery rate is h = 0.65 . Fig. 12 shows the experimental results at 5 A chargedischarge current of the ultracapacitor. The energy conversion efficiency from the mechanical energy to electric potential energy is 0.72. The energy recovery rate is 0.58. Comparing Fig. 12 with Fig. 11, the recovery energy is more at 10 A than at 5 A.Comparing the experimental results with the simulation results, the experimental value is lower than the simulation value, because the simulation is studied in an ideal state and ignores the energy losing during the energy conversion process.6 Conclusions(1) Application of ultracapacitor energy storage system in motor hoist has been introduced from the system structure and control strategy perspective in detail. The control strategy ensures that the ultracapacitor and PMSM operate safely and efficiently. The control strategy is designed in detail and simulated.(2) The loading experiment proved that the control strategy is stable and reliable. After this study, a theoretical basis has been established for the application of the ultracapacitor energy regeneration system to hoisting equipments and other construction machineries. Further work on recovery system for large-scale synchronous hoisting equipment with ultracapacitor is underway.References1 YANG Ming-Ji, JHOU Hong-Lin. A cost-effective method of electric braking with energy regeneration for electric vehiclesJ. IEEE Transactions on Industrial Electronics, June, 2009, 56(6): 2 2032 212.2 ROTENBERG D, VAHIDI A V. Ultracapacitor assisited powertrains: modeling, control, sizing, and the impact on fuel economyC/2008 American Control Conference, Washington, USA, June 1113, 2008:981987.3 AWERBUCH J J,SULLIVAN C R. Control of ultracapacitor-battery hybrid power source for vehicular applicationsC/IEEE Energy 2030 Atlanta, Georgia, USA, November 17
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:【机械类毕业论文中英文对照文献翻译】超级电容器电动葫芦再生制动策略
链接地址:https://www.renrendoc.com/p-77693615.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!