说明书.doc

链夹式大葱移栽机的设计【说明书+CAD+SOLIDWORKS】

收藏

资源目录
跳过导航链接。
链夹式大葱移栽机的设计【说明书CADSOLIDWORKS】.zip
链夹式大葱移栽机的设计【说明书+CAD+SOLIDWORKS】
说明书.doc---(点击预览)
答辩记录.doc---(点击预览)
答辩PPT.ppt---(点击预览)
开题报告PPT.ppt---(点击预览)
开题报告.doc---(点击预览)
小论文.doc---(点击预览)
任务书.docx---(点击预览)
中期检查表.doc---(点击预览)
A4-限位导轨.DWG---(点击预览)
A4-苗夹.DWG---(点击预览)
A4-开沟器.DWG---(点击预览)
A4-夹紧导轨.DWG---(点击预览)
A3-总装配体.DWG---(点击预览)
三维图
装配图
总装配体.SLDASM
总装配体A.SLDASM
装配体 投苗输送链.SLDASM
装配体 限位导轨.SLDASM
装配体 苗槽链轮.SLDASM
装配体1.SLDASM
装配体2.SLDASM
装配体3.SLDASM
装配体4.SLDASM
装配体地轮.SLDASM
装配体开沟器.SLDASM
装配体苗夹.SLDASM
装配体覆土轮.SLDASM
零件图
GB/T7810-1995带立式座轴承UCP208.SLDPRT
~$链条1.SLDPRT
三点悬挂杆.SLDPRT
三点悬挂板.SLDPRT
圆锥齿轮34×2.SLDPRT
地轮.SLDPRT
地轮GB/T7810-1995带立式座轴承UCP211.SLDPRT
地轮轴 链轮.SLDPRT
地轮轴.SLDPRT
地轮链条1.SLDPRT
地轴链条.SLDPRT
大链轮.SLDPRT
夹紧导轨.SLDPRT
小链轮.SLDPRT
开沟器.SLDPRT
开沟器固定板.SLDPRT
张紧装置.SLDPRT
弹簧.SLDPRT
悬挂杆连接.SLDPRT
放置苗箱板.SLDPRT
机架1.SLDPRT
机架2.SLDPRT
机架3.SLDPRT
板1.SLDPRT
板2.SLDPRT
板3.SLDPRT
椅子.SLDPRT
苗夹.SLDPRT
苗夹底座.SLDPRT
苗槽传动链.SLDPRT
苗槽皮带.SLDPRT
苗槽皮带轴.SLDPRT
苗槽皮带轴2.SLDPRT
覆土轮.SLDPRT
覆土轮杆.SLDPRT
轴1.SLDPRT
轴2.SLDPRT
轴3.SLDPRT
链条.SLDPRT
链条1.SLDPRT
销子.SLDPRT
限位导轨1.SLDPRT
限位导轨2.SLDPRT
翻译
压缩包内文档预览:(预览前20页/共29页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:77860899    类型:共享资源    大小:39.71MB    格式:ZIP    上传时间:2020-05-07 上传人:柒哥 IP属地:湖南
40
积分
关 键 词:
说明书+CAD+SOLIDWORKS 链夹式 大葱 移栽 设计 说明书 CAD SOLIDWORKS
资源描述:

购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载可得到资源目录里的所有文件。。。【注】:dwg后缀为CAD图纸,doc,docx为WORD文档,原稿无水印,可编辑。。。具体请见文件预览,有不明白之处,可咨询QQ:12401814

内容简介:
Advanced Robotics, Vol. 16, No. 6, pp. 557560 (2002)VSP and Robotics Society of Japan 2002.Also available online - Technical noteA vertically moving robot able to grip handrailsfor ? re-? ghtingHISANORI AMANONational Research Institute of Fire and Disaster, 3-14-1 Nakahara, Mitaka, Tokyo 181-8633, Japan,amanofri.go.jpKeywords: Fire-? ghting robotics; disaster response robotics; rescue robotics; urban search and rescue.1. INTRODUCTIONThere are many high-rise condominiums and ladder tracks are used against high-risebuilding ? re. However, their height is much higher than the reachable height of theladders. Onthe other hand, there have been some studies of robots moving verticallyon walls by means of suckers. However, their climbing speed and reliability wasnot suf? cient for use in an actual ? re-? ghting operation. Therefore, I propose avertically moving robot that utilizes balcony handrails as a step. I have developeda full-size trial robot with a hybrid control system that consists of non-linearfeedback and sequential methods. Finally, I concluded that the vertically movingrobot is useful for ? re-? ghting against high-rise condominiums from the results ofexperiments. Thus, I introduce the outline of the robot and explain the performanceof the robot.2. OUTLINE OF THE ROBOTA photograph of the robot is shown in Fig. 1. The dimensions are 4.0 m in height,0.5 m in width and 0.4 m in depth approximately. The mass is about 38.5 kg. Therobot consists of two grippers and three serial links. The three links are connectedwith rotating joints; the two grippers are installed through rotating joints on eachend of the connected links.Grippers 1 and 2 are the same, although they are installed in reverse for theconnected links. Links 1 and 3 are the same except for the installed electricaldevices. The computer and its interface systems are mounted to link 1, the motordrive circuits are installed to link 3. Links 1 and 3 are installed to the link 2symmetrically.The robot works on an electrical power of direct current 48 V and the power issupplied from outside. The power supply lines are connected to the center of link 2.Direct current motors are used as actuators. Their rated power is 150 W.558H. AmanoFigure 1. Photograph of vertically moving robot.In order to control the robot, I use a hybrid controller consisting of a joint spacecontroller and a sequential controller. The joint space controller is designed basedon the non-linear feedback method. The desired trajectories were planed for thejoint space controller.3. ROBOT MOTIONIn this section, I explain the robot motion brie? y. A side view of the robot motionis shown in Fig. 2. The shape of the robot is shown roughly each straightline represents each link and gripper of the robot, and the joints of the robot arerepresented by circles. The motion is divided into the following ?ve parts.Step 1. The robot releases the lower ? oor handrail. Gripper 2 is lifted vertically.Step 2. The robot swings Gripper 2 to outside of the balcony.Step 3. Gripper 2 is lifted up. Gripper 2 and Link 3 go though the inside of Link 2.Each link and Gripper 2 keeps some space between the handrails to avoidcollision with the obstacles sticking out from the balcony.Step 4. Gripper 2 is lifted up also.The upper ? oor interval is not clear at thebeginning of the motion. Then the robot temporarily lifts Gripper 2 as highas possible.Step 5. Gripper 2 is let down vertically and gets caught passively the handrail ofthe upper ? oor.The robot has gone up one ? oor, comparing the ? nal state and initial state ofthe motion. The robot climbs ? oors one after another by repeating this motion.A vertically moving robot able to grip handrails559Figure 2. Outline of robot motion.However the robot is upside down, and thus it is needed to switch joint 1 to joint 4,joint 2 to joint 3, joint 3 to joint 2 and joint 4 to joint 1 for climbing next ? oor up.4. PERFORMANCEI performed experiments at several ? oor intervals from 2.50 to 3.20 m at intervalsof 0.10 m. The robot was able to climb ? oors whose interval is up to 3.10 m.The required time depends on the ? oor interval. I discuss the required time toclimb one ? oor, dividing the motion at the end of Step 3 shown in Fig. 2.The required time of the ? rst part depends on the lower ? oor interval. Althoughthe second part depends on both the lower and upper ? oor interval strictly, I regardit as depending only on the second part. The assumption agrees well with theexperimental results. The required time of the ? rst part is shown in Table 1 andthe second part is shown in Table 2. It is shown only the results of every 0.20 m inthe tables to make the tables simples. The time for switching controllers is includedin the second part.For example, it takes 18.8 s in the case when the lower ? oor interval is 3.10 mand the upper ? oor interval is 2.50 m. The climbing speed is 0.149 m/s in thiscase. I considered that the robot climbs the mean value of the lower and upper ? oorinterval, i.e. the robot climbs 2.8 m in this case.560H. AmanoTable 1.Time required for ? rst partLower ? oor interval (m)2.502.702.903.10Time (s)6.236.496.787.13Table 2.Time required for second partLower ? oor interval (m)2.502.702.903.10Time (s)11.67 11.16 10.59 9.90The maximum speed is 0.182 m/s on the condition that both lower and upper? oor intervals are 3.10 m. The slowest case is that both ? oor intervals are 2.50 mand the speed is 0.140 m/s. I calculated the mean value of the climbing speed. It is0.161 m/s.5. CONCLUSIONSThe author concludes that the vertically moving robot designed is useful for ? re-? ghting against high-rise condominiums. It becomes clear that this robot can climbup buildings within a reasonable time. Furthermore, this robot can climb buildingswhose ? oor interval varies from 2.50 to 3.10 m.The robot is just a full-size trial model and there exists some technical problemswith water resistance, durability, and reliability to deploy the robot in ? re stationsand use it in actual ? re-? ghting. However, the basic parts of the development havebeen completed.REFERENCES1. H. Amano, T. J. Tarn and K. Osuka, Development of vertically moving robot with grippinghandrails for ? re ? ghting numerical simulation study, in: Proc. 2000 JapanUSA FlexibleAutomation Conf. (2000).2. H. Amano, K. Osuka and T. J.Tarn, Experimental study of vertically moving robot with grippinghandrails for ? re ? ghting, in: Proc. 5th Int. Conf. on Motion and Vibration, Vol. 1, pp. 293298(2000).3. H. Amano, K. Osuka and T.-J. Tarn, Development of vertically moving robot with grippinghandrails for ? re ? ghting, in: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 661667(2001).Advanced Robotics, Vol. 16, No. 6, pp. 553556 (2002)VSP and Robotics Society of Japan 2002.Also available online - Technical noteFire robots developed by the Tokyo Fire DepartmentKAZUYOSHI MIYAZAWATokyo Fire Department, Otemach 1-3-5 Chiyoda-ku, Tokyo 100-8119, JapanKeywords: Fire ? ghting robotics; disaster response robotics; rescue robotics; ? eld robotics; deployedrobotics.1. INTRODUCTION FIRE ROBOTS FOR THE SAFETY OF CITIZENSRemarkable changes in city structures and the social environment continue todiversify disasters in the 21st century. Todays disasters are highly formidable for? re ? ghters to handle and ? re robots are in wider use than in the past.Fire robots take the place of ? re ? ghters for ef? cient ? re ground operationsin circumstances where ? re ? ghters ? nd dif? culty in their activities because ofexplosions, toxic leakage, heat/thick smoke hazards, etc.As an overall support for emergency response, the Tokyo Fire Departmentdevelops the latest high-technology robots that cope with major urban disasters.2. OVERVIEW2.1. Unmanned monitor nozzle vehicle (Rainbow 5) (Fig. 1)This robot deals with petrochemical complex ? res, aircraft crash ? res, oil/fat ? rescaused by overturned tank tracks, serious ? res with intense radiant heat, explosionhazard ? res, etc.Table 1.Models of ? re robotsModelPiecesUsageUnmanned monitor nozzle4Fire ? ghtinglarge-scale ? resvehicle (Rainbow 5)major oil ? resRemote-control1tunnel ? res?re? ghting vehicle(Jet Fighter)Fire? ghting robot1? re-resistive(prototype)building ? resRescue robot1Rescuehazardous material/(Robocue)toxic gas disastersUnderwater robot6search and rescue(Water Search)in waterReconnaissance robot1Fact ? ndingthick smoke/toxic gas disasters(Fire Search)554K. MiyazawaThe robot is equipped with an obstacle remover to get rid of fallen objects,hazardous materials drums, etc. A two-nozzle system is applied to the robot. Waterand foam are discharged at 5000 and 3000 l/min, respectively.2.2. Remote-control ?re?ghting vehicle (Jet Fighter) (Fig. 2)This robot handles urban disasters like tunnel ? res (e.g. telephone cable tunnel ? res)and underground shopping ? res.The robot is propelled by the force of high-pressure water discharge and a motor.2.3. Fire?ghting robot (prototype) (Fig. 3)This remote-control ? re? ghting robot ? ghts ? res in ? re-resistant buildings orunderground malls which are inaccessible to ? re? ghters due to ? ames, thick smokeor heat. The robot is comprised of a body, a pressurizer, a generator for a pressurizerand a control board.The robot discharges water at 200 l/min. A head-mount display presents three-dimensional images for the effective operation of the robot.2.4. Rescue robot (Robocue) (Fig. 4)This rescues and retrieves a victim with a pair of hi-tech manipulators. It moves onengine-driven rubber crawlers.A sense of gripping force is signaled back to an operator for better operability.Figure 1. Unmanned monitor nozzlevehicle (Rainbow 5).Figure 2. Remote-control ? re? ghting ve-hicle (Jet Fighter).Figure 3. Fire? ghting robot (prototype).Figure 4. Rescue robot (Robocue).Fire robots developed by the Tokyo Fire Department555Figure 5.Underwater robot (WaterSearch).Figure 6.Reconnaissance robot (FireSearch).2.5. Underwater robot (Water Search) (Fig. 5)This remote-control robot is used for the ef? cient search and rescue of victims inwater when ? re ? ghters diving is dif? cult because of weather conditions or thedepth of the water. Using three propellers for horizontal and vertical movements, itcan dive to a depth of 110 m.Its ultrasonic detector (sonar) ? nds obstacles in polluted water.2.6. Reconnaissance robot (Fire Search) (Fig. 6)In case of dif? culty of ? re? ghters entry to a disaster scene with thick smoke ortoxic gases, this remote-control robot responds for fact ? nding.It enters disaster-hit spots for gas density measurement, photography in thicksmoke, situation assessment with a monitor camera, etc.3. CHALLENGES FOR FIRE ROBOTSAlthough the latest technology is employed in our ? re robots, their functions arenever on satisfactory levels. Some of the problems are as detailed below.3.1. Heat resistanceFire robots need to have heat resistance for their control system, which must beprotected from heat damage.Although a water-cooling system is apparently the most practical, it is lesseffective in practice. It is indispensable to develop an epochal cooling system.3.2. MobilityIt is required that ? re robots move up and down stairs. There are several means toadopt for the greater mobility of robots, like the employment of crawlers or specialwheels. Many of our robots are equipped with crawlers.However, this driving mechanism has many limitations on speed and load. It isnecessary, therefore, to develop more advanced driving systems.556K. Miyazawa3.3. Power sourcesAspower sources for ? re robots, several means such as internal combustion engines,batteries, external power supplies are possible.Although there is no perfect means, the battery system is a promising powersource. Water pressure is a power source that cannot be ignored.3.4. Signal transmission systemThere are two signal transmission systems radio and wire. Currently wire ismore reliable than radio. However, technical developments of robots indicate radiosystems as the issue to be considered in the future.3.5. AutonomyOur ? nal target is the development of autonomous ? re robots that can decide bythemselves what actions to take by assessing surrounding situations.To give ? re robots the capability of autonomy, we have to introduce mechanicalbrains into our robots.4. CONCLUSIONSThe Tokyo Fire Department has 14 pieces of six models of ? re robots.We would like to upgrade ? re? ghting robots practically and we are thinking ofdeveloping high-performance haz-mat response robots.In the future, we would like to develop multi-purpose, autonomous ? re robotswith the same mobility and judgment as ? re? ghters. 附件1:外文资料翻译译文一个垂直移动的机器人能够控制手动的消防设备1.引言关键词:消防机器人,救灾机器人,救援机器人,城市搜索和救援.有许多高层公寓和阶梯轨道被用于阻止高速增长的建筑火灾。然而,他们的身高远远高于到达的高度梯子。另一方面,也出现了一些研究移动机器人垂直关于墙的吸管手段。然而,它们的提升速度和可靠性可以在实际的消防操作中使用。我建议首先利用的移动机器人的一个手臂。我开发全尺寸的混合控制系统,它由非线性试验机器人反馈和顺序的方法组成。最后,我从实验结果中得出的结论是垂直移动机器人可用于高层公寓的消防。因此,我介绍机器人的大纲和解释机器人的性能。2.机器人纲要机器人的照片如图1尺寸为4.0米高,0.5米宽,大约0.4米深度。总共约38.5千克。机器人由两个夹子和三个连续的链环组成。三个链环用来连接旋转接头,两个夹钳被安装在通过旋转接头在每个链环的末尾。夹钳1和2的作用是相同的,虽然他们是被反向安装在连接链环上的。链环1和3的作用是相同的,除了安装在电力设备上。计算机及其接口的安装被设置在链路1上。发动机的驱动电路被安装在链路3上。链路1和3对称的安装在链路2上。该机器人工作在直流为48V的电功率上,并且电源从外部供电。该电源连接到链路2中。直流发动机作为驱动器。它们的额定功率是150W。为了控制机器人,我使用了由联合空间控制器和顺序控制器组成的混合控制器。联合空间控制器的设计是基于非线性反馈的方法。在联合空间控制器中设置了理想的轨迹。3.机器人运动 在本节中,我简要地解释一下机器人运动。机器人运动侧图如图2,机器人的形状大致显示各个环节和机器人夹持器,以及圆圈代表机器人的连接处。这项运动被分为以下五个部分。第1步。机器人释放较低层扶手。手抓2解除垂直。第2步。该机器人旋转手抓2至阳台外面。第3步。手抓2抬起。抓取2和链路3通过链路2内部。每个链路和手抓2之间保持一定的空间,以避免与伸出的障碍物发生碰撞。第4步。手抓2继续抬起。对刚开始运动楼上间隔不明确,然后机 图1移动机器人器人暂时将手抓2尽可能的举高。第5步。手抓2放下垂直并陷入到被动的楼上扶手。机器人上升一层楼时最终状态和初始状态发生变化。机器人通过这项运动一层又一层攀爬楼层。一个可以握扶手的垂直移动机器人机器人是倒置的,因此为了能爬上一各楼层时,它需要将结构1转变为结构2,结构2转变为结构3,结构3转变为结构2,结构4转变为结构1。 图2.机器人运动略图 4性能我完成在几个楼层间隔从2.50至3.20米,其间隔为0.10米的实验,发现机器人能攀爬间隔高达3.1米的楼层。攀爬所需的时间取决于在楼层的间隔。我论述爬一层楼所需要得时间,在图2中将这个运动分为三步。第一部分所需的时间依赖于较低层间隔。虽然第二部分依赖于两个上下楼层间隔严格,我把它看作仅仅依靠第二部分。假设较好吻合实验结果。第一部分所需的时间见表1和第二部分是列于表2。结果表明,在表中每0.20米的间隔使表变得简单。开关控制器的时间包括在第二部分。例如,当最底层的间隙为3.10米和上一层的间隙为2.50米时,在这种情况下采用18.8s。在这种情况下,它的爬行速度是0.149m/s。我认为,机器人攀登的下限和上限平均值楼间隔,即机器人在这种情况下爬行2.8米。 表1 第一部分所需时间较底层间隔(m) 2.50 2.70 2.90 3.10时间(s) 6.23 6.49 6.78 7.13表2 第二部分所需时间较低层间隔(m) 2.50 2.70 2.90 3.10时间(s) 11.67 11.16 10.59 9.90在最高速度为0.182米/秒的条件下,较低层和上一层的楼层间隔都是3.10米,两个楼面的最小间隔是2.50米,速度是0.140米/秒,由此我计算出的机器人爬行速度的平均值。它是0.161米/秒。5.结论作者的结论是设计垂直移动机器人是用于高层公寓的消防战斗。这样就很清楚,这种机器人在合理时间内能攀登建筑物。此外,这种机器人可以攀爬建筑物不同的楼层间隔从2.50至3.10米。该机器人只是一个原尺寸试验模型并且还存在一些技术问题与耐水性,耐久性和可靠性部署机器人在消防局并利用它在实际的消防中灭火。然而,发展的基本部分地区已经完成。1 导言维护公民安全的消防机器人各种灾难还在继续侵袭21世纪,使城市结构在社会环境发生了显著的变化
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:链夹式大葱移栽机的设计【说明书+CAD+SOLIDWORKS】
链接地址:https://www.renrendoc.com/p-77860899.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!