




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.2立方根,1.知道什么是立方根,什么是开立方,并能运用开立方与立方之间互为逆运算的关系求一个数的立方根.2.知道立方根的性质,会用符号正确表示一个数的立方根.3.能用计算器求立方根,知道立方根的小数点的位置移动规律.,学习目标,新课导入,立方根的概念与性质,设这种包装箱的棱长为xm,则,x3=27,这就是要求一个数,使它的立方等于27.,因为33=27,所以x=3.,因此这种包装箱的棱长为3m.,知识讲解,一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根或三次方根如果x3=a,那么x叫做a的立方根,33=27,所以3是27的立方根.,求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.,探究,根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?,因为23=8,所以8的立方根是();因为()3=0.064,所以0.064的立方根是();因为()3=0,所以0的立方根是();因为()3=-8,所以-8的立方根是();因为()3=,所以的立方根是().,2,0.4,0.4,0,0,-2,-2,正数的立方根是正数;负数的立方根是负数;0的立方根是0.,类似于平方根,一个数a的立方根,用符号“”表示,读作“三次根号a”,其中a是被开方数,3是根指数.,表示8的立方根,=2,表示8的立方根,=2,因为=_,=_,所以_;因为=_,=_,所以_;,探究,2,2,=,3,3,=,例求下列各式的值:,解:(1)=4;,(2)=;,(3)=.,1.求下列各式的值.,10,0.1,1,即学即练,2.比较3,4,的大小.,解:33=27,43=64,因为275064,所以34,3.立方根概念的起源与几何中正方体有关,如果一个正方体的体积为V,这个正方体的棱长为多少?,解:,用计算器计算一个数的立方根,实际上,有很多有理数的立方根是无限不循环小数,例如,等都是无限不循环小数.我们可以用有理数近似地表示它们.,用计算器求,依次按键,这样就得到的近似值12.26494081,探究,用计算器计算,你能发现什么规律?用计算器计算(精确到0.001),并利用你发现的规律求,的近似值.,=6,=0.6,=0.06,=60,1.利用计算器求下列各式的值.,(1),(2),(2),12,25,13,即学即练,1.审查下列说法:(1)2是8的立方根;(2)4是64的立方根;(3)是的立方根;(4)(4)3的立方根是4,其中正确的个数是(),A.1个B.2个C.3个D.4个,C,随堂练习,2.下列各式:(1);(2);(3);(4)中,有意义的有(),D,A.1个B.2个C.3个D.4个,3.已知=0.7,则=_;=_.,70,0.07,4.求下列各式的值.,(1),(2),(3),(4),=0.3,=,=,=,=,=,5.比较下列各组数的大小.,(1)与2.5;(2)与.,解:因为=92.53=15.625所以15.625所以2.5,因为=3所以3所以,6.若=2,=4,求的值.,解:=2,=4.x=23,y2=16,x=8,y=4.x+2y=8+24=16或x+2y=824=0.=4或=0.,如果x3=a,那么x叫做a的立方根,性质,定义,正数的立方根是正数,负数的立方根是负数;0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 包头市中石化2025秋招面试半结构化模拟题及答案油品分析质检岗
- 国家能源庆阳市2025秋招面试专业追问及参考财务审计岗位
- 中卫市中石油2025秋招面试半结构化模拟题及答案油气储运与管道岗
- 2025年高一生物必修一试题及答案
- 国家能源商丘市2025秋招写作案例分析万能模板可套用
- 莆田市中石化2025秋招网申填写模板含开放题范文
- 中国广电金华市2025秋招供应链采购类专业追问清单及参考回答
- 玉林市中石油2025秋招面试半结构化模拟题及答案法律与合规岗
- 温州市中石油2025秋招笔试模拟题含答案安全环保与HSE岗
- 广州市中储粮2025秋招写作案例分析万能模板直接套用
- T-BECS 0006-2025 城镇重要基础设施内涝防护规划设计规范
- 运动会进行课件
- 污水厂设备更新改造工程可行性研究报告
- 2025年河南省事业单位面向哈密市和十三师新星市少数民族高校毕业生专项招聘15名考试参考题库及答案解析
- 苗族舞蹈课件
- 煤矿安全规程2025版解读
- 民航网络安全常识培训课件
- 石油化工设备维护检修规程通用设备12
- 《三角形的面积》教学设计方案
- GB/T 14667.1-1993粉末冶金铁基结构材料第一部分烧结铁、烧结碳钢、烧结铜钢、烧结铜钼钢
- 带状疱疹及带状疱疹后神经痛
评论
0/150
提交评论