诺基亚手机7360外壳模具的设计与制造【一模两腔】【侧抽芯】【说明书+CAD】
收藏
资源目录
压缩包内文档预览:(预览前20页/共41页)
编号:78013221
类型:共享资源
大小:139.97MB
格式:ZIP
上传时间:2020-05-08
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
50
积分
- 关 键 词:
-
一模两腔
侧抽芯
说明书+CAD
诺基亚
手机
7360
外壳
模具
设计
制造
说明书
CAD
- 资源描述:
-
购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载可得到资源目录里的所有文件。。。【注】:dwg后缀为CAD图纸,doc,docx为WORD文档,原稿无水印,可编辑。。。具体请见文件预览,有不明白之处,可咨询QQ:12401814
- 内容简介:
-
目录1.装配图12.动模座板13.垫块24.推杆固定板25.拉料杆36.顶杆137.动模板48.动模型腔49.定模板511.定模型腔512.定模座板613.浇口套614.定位圈715.导柱716.导套817.动模支撑板818.推板919.顶杆2920.斜滑块杆11021复位杆.1022.滑座1123.斜滑块杆21124.手机前盖1224.手机后盖1325.开模图1426.爆炸图1527.数控仿真加工图册16装配图(YGJZ-07-00)动模座板(YGJZ-07-01)垫块(YGJZ-07-02)推板固定板(YGJZ-07-03)拉料杆(YGJZ-07-04)顶杆1(YGJZ-07-05)动模板(YGJZ-07-06)动模型腔(YGJZ-07-06)定模板(YGJZ-07-07)定模型腔(YGJZ-07-07)定模座板(YGJZ-07-08)浇口套(YGJZ-07-09)10定位圈(YGJZ-07-10)11导柱(YGJZ-07-11)导套(YGJZ-07-12)12 动模支撑板(YGJZ-07-13)14 推板(YGJZ-07-14)顶杆2(YGJZ-07-15)斜滑块杆1(YGJZ-07-16)13复位杆(YGJZ-07-16)滑座(YGJZ-07-17)斜滑块杆2(YGJZ-07-19)手机前盖手机后盖开模爆炸图MasterCAM 截图1 加工模型2 加工材料设置 3 粗加工手机前盖型腔(刀具设置) 4 加工模拟5 半精加工 精加工(刀具设置)6加工模拟7刀具轨迹8手机后盖型腔加工 粗加工刀具设置9半精加工 精加工11 加工模拟12加工路径13 铣槽加工14加工模拟15刀具轨迹29 毕 业 设 计 模具零件三维造型卡片专 业 机械设计制造及其自动化 学生姓名 郑 敏 班 级 BD机制031 学 号 0320110131 指导教师 袁 铁 军 完成日期 2007年6月10日 机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 1页 车 间工 序 号工 序 名 称材 料 牌 号金一10铣平面45毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件3603604511设备名称设备型号设备编号同时加工件数平面铣床X62W夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1粗铣下表面盘铣刀400mm0100/0.02921160.18212.6 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第2页车 间工 序 号工 序 名 称材 料 牌 号金一115入库45毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1粗铣上表面盘铣刀400mm0100/0.02921160.18212.6 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 3 页车 间工 序 号工 序 名 称材 料 牌 号金一115入库45毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图 1精铣上表面盘铣刀400mm游标卡尺1211520.10.513.6 描 校2 粗铣四周侧面盘铣刀100mm4911540.18210.93底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 4 页车 间工 序 号工 序 名 称材 料 牌 号金一1545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1精铣下表面盘铣刀400mm游标卡尺1211520.10.513.6 描 校2精铣型腔至图样尺寸指状铣刀3 钻16的通孔16的钻头底图号钻442的通孔42的钻头装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 5 页车 间工 序 号工 序 名 称材 料 牌 号金一2045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1钻左侧210的孔深150mm10钻头0300/0.0214324503491035 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 6 页车 间工 序 号工 序 名 称材 料 牌 号金一2545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1钻右侧210的孔深150mm10钻头0300/0.0214324503491035 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第7 页车 间工 序 号工 序 名 称材 料 牌 号金一3045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1钻前表面10的孔深222.5mm10钻头0300/0.021432450.34.910.41 描 校2 钻前表面10的孔深260.5mm 10钻头1432450.34.910.39底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 8 页车 间工 序 号工 序 名 称材 料 牌 号金一3545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1钻孔4M16至416深25mm麻花钻16游标卡尺564.4280.247.910.36 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第9 页车 间工 序 号工 序 名 称材 料 牌 号金一4045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1扩442孔的端部至448深8麻花钻48游标卡尺573.25360.121010.24 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第10 页车 间工 序 号工 序 名 称材 料 牌 号金一4545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1攻4M16螺纹深25mm16丝锥 游标卡尺99.5251.53810.61 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 11 页车 间工 序 号工 序 名 称材 料 牌 号金一5045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图攻810孔的端部至M14深1014丝锥游标卡尺99.5251.53810.61 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 12 页车 间工 序 号工 序 名 称材 料 牌 号金一5545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图淬火 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 13 页车 间工 序 号工 序 名 称材 料 牌 号金一6045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图1电脉冲加工型腔精密尺寸千分尺 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第14 页车 间工 序 号工 序 名 称材 料 牌 号金一6545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图磨上表面砂轮千分尺 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第15 页车 间工 序 号工 序 名 称材 料 牌 号金一7045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图磨型腔面砂轮千分尺 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第16页车 间工 序 号工 序 名 称材 料 牌 号金一7545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图磨42孔砂轮0300/0.02 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第17 页车 间工 序 号工 序 名 称材 料 牌 号金一8045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图型腔精整 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 18 页车 间工 序 号工 序 名 称材 料 牌 号金一8545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图清洗 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 19 页车 间工 序 号工 序 名 称材 料 牌 号金一9045毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图检验 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期机械加工工序卡片产品型号 零件图号 共20页产品名称诺基亚7360手机外壳零件名称 定模板第 20 页车 间工 序 号工 序 名 称材 料 牌 号金一9545毛坯种类毛坯外形尺寸每毛坯件数每台件数锻件36036045设备名称设备型号设备编号同时加工件数夹具编号夹具名称冷却液工步号工 步 内 容刀 具名称及编 号量 具名称及编 号辅 具名称及编 号主 轴转 速转/分切 削速 度米/分走刀量毫米/齿吃刀深度毫米走 刀次 数单件工时定额机动(min)辅助 描 图入库 描 校 底图号装订号编制(日期) 校对(日期)会签(日期) 标准化(日期) 审核(日期)标志处数更改文件号签 字日 期标志处数更改文件号签 字日 期盐城工学院本科生毕业设计过程卡片集 2007动模座板工艺过程卡片零件名称动模座板模具名称及编号诺基亚7360手机外壳模具零件编号 YGJZ-07-01材料名称 45 钢毛坯尺寸360mm360mm30mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削铣六面20钳工划线划出各中心孔的位置线30平磨磨上下面达到设计要求40钻削钻削各中心孔50热处理 淬火60检验工艺员年 月 日零件质量等级垫块工艺过程卡片零件名称垫块模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-02材料名称 45 钢毛坯尺寸320mm105mm60mm件数2工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削铣六面20平磨磨上下平面30钳工划线划出通孔中心线40钻削钻削通孔50热处理 淬火60检验工艺员年 月 日零件质量等级推杆固定板工艺过程卡片零件名称推杆固定板模具名称及编号诺基亚7360手机外壳模具零件编号 YGJZ-07-03材料名称 45 钢毛坯尺寸360mm225mm25mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削六面加工20平磨磨出六面30钳工划线划出螺孔和斜杆槽台阶孔的中心线40铣削铣斜杆槽达设计要求50钻削钻螺纹孔并锪孔60平磨磨上下两平面70检验工艺员年 月 日零件质量等级拉料杆工艺过程卡片零件名称拉料杆模具名称及编号诺基亚7360手机外壳模具零件编号 YGJZ-07-04材料名称 T8A毛坯尺寸22mm140mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30热处理渗碳,淬火40磨削磨外圆50研磨 研磨外圆达图样要求 工艺员年 月 日零件质量等级顶杆1工艺过程卡片零件名称推杆1模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-05材料名称 T8A毛坯尺寸12mm130mm件数10工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30热处理渗碳,淬火40磨削磨外圆50研磨 研磨外圆达图样要求60检验 工艺员年 月 日零件质量等级动模板工艺过程卡片零件名称动模板模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-06材料名称45 钢毛坯尺寸360mm360mm30mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削铣六面20平磨磨上下面30钳工划线划出型槽的轮廓线和各孔的位置线40铣削粗铣型腔50数控铣 精铣型腔60电火花加工电火花复加工型腔70钳工加工修整型槽80钻削钻螺纹孔和螺杆孔,攻螺纹90磨削磨型槽及上下面达到设计要求100检验工艺员年 月 日零件质量等级定模板工艺过程卡片零件名称定模板模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-07材料名称 T10A毛坯尺寸360mm360mm45mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20热处理退火30铣削铣平面40平磨磨上下面(留磨量0.4 mm)50型腔加工在型腔轮廓线内成型加工60钳工画线画出导柱孔和螺纹孔的位置线70磨削磨型腔达到设计要求80钻削加工 钻导杆孔和螺纹孔90钳工加工研磨型腔达到设计要求100检验工艺员年 月 日零件质量等级定模座板工艺过程卡片零件名称定模座板模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-08材料名称 45 钢毛坯尺寸45536030mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20刨削六面加工均放淬磨30平磨磨出六面再放磨40钳工划线划出螺孔和主流道衬套的中心线50钻削钻削螺纹孔和主流道衬套孔60攻螺纹 对各螺纹孔攻螺纹70热处理淬火80平磨磨上下两平面90圆磨磨内孔100检验工艺员年 月 日零件质量等级浇口套工艺过程卡片零件名称浇口套模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-09材料名称 T8A毛坯尺寸55mm60mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆,端面,30钳工加工钻孔40镗孔精镗锥孔50 磨削 磨外圆及球面凹空达到设计要求60热处理淬火70磨削加工磨外圆达图样要求80检验工艺员年 月 日零件质量等级定位圈工艺过程卡片零件名称定位圈模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-10材料名称 45 钢毛坯尺寸105mm20mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20热处理退火30铣削铣平面40钳工画线画出各孔的位置线50钻削加工钻孔60磨削精磨曲面达到设计要求70检验 工艺员年 月 日零件质量等级导柱工艺过程卡片零件名称导柱模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-11材料名称 T8A毛坯尺寸45mm65mm件数4工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30热处理渗碳,淬火40磨削磨削外圆50研磨 研磨外圆,抛光圆角60检验工艺员年 月 日零件质量等级导套工艺过程卡片零件名称导套模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-12 材料名称 T8A毛坯尺寸55mm45mm件数4工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30钻削钻孔及镗孔40热处理渗碳,淬火50磨削 磨外圆达图样要求,磨内孔60检验 工艺员年 月 日零件质量等级动模支撑板零件名称动模支撑板模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-13材料名称 45 钢毛坯尺寸360mm360mm55mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削铣六面20钳工划线划出各中心孔和斜杆槽的位置线30平磨磨上下面达到设计要求40铣削铣斜杆槽达设计要求50钻削钻削各中心孔60热处理 淬火70检验工艺员年 月 日零件质量等级推板工艺过程卡片零件名称推板模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-14材料名称 45 钢毛坯尺寸360mm225mm35mm件数1工序机号工种施工简要说明定额工时实做工时制造者检验等级10铣削六面加工20平磨磨出六面30钳工划线划出螺孔和台阶孔的中心线40平磨磨上下两平面50钻削钻螺纹孔并锪孔60检验工艺员年 月 日零件质量等级顶杆2工艺过程卡片零件名称顶杆2模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-15材料名称 T8A毛坯尺寸12mm105mm件数2工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30热处理渗碳,淬火40磨削磨外圆50研磨 研磨外圆达图样要求60检验 工艺员年 月 日零件质量等级斜杆1工艺过程卡片零件名称斜杆1模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-16材料名称 T10A毛坯尺寸106mm10mm8mm件数4工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20铣削铣斜杆的四个面30钳工挫削斜杆的头部画出连接孔的中心线40钻削钻出连接孔50热处理渗碳,淬火60磨削 精磨斜杆的配合面70检验工艺员年 月 日零件质量等级滑座工艺过程卡片零件名称滑座模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-17材料名称 T8A毛坯尺寸43mm40mm30mm件数8工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20铣削铣平面30钳工挫削滑槽40热处理渗碳,淬火50磨削磨削两个配合表面60检验 工艺员年 月 日零件质量等级复位杆工艺过程卡片零件名称复位杆模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-18材料名称 T8A毛坯尺寸40mm130mm件数4工序机号工种施工简要说明定额工时实做工时制造者检验等级10下料切断毛坯20车削车外圆及端面30热处理渗碳,淬火40磨削磨外圆50研磨 研磨外圆达图样要求60检验 工艺员年 月 日零件质量等级斜杆2工艺过程卡片零件名称斜杆模具名称及编号诺基亚7360手机外壳模具零件编号YGJZ-07-19材料名称 T10A毛坯尺寸106mm10mm8mm件数4工序机号工种施工简要说明定额工时实做工时制造者检验等级10备料将毛坯锻成所要求的尺寸20铣削铣斜杆的四个面30钳工挫削斜杆的头部画出连接孔的中心线40钻削钻出连接孔50热处理渗碳,淬火60磨削 精磨斜杆的配合面70检验工艺员年 月 日零件质量等级19工 艺 文 件 文 件 编 号产 品 型 号产 品 名 称产 品 图 号媒体编号本 册 内 容旧底图总号底图总号批 准年月日签名XXXXXXXXX 科 技 股 份 有 限 公 司日期格式(G)XXXXXXXXXXXXXX科科技技股股份份有有限限公公司司工工 艺艺 说说 明明产品型号工艺名称产品名称共 页第 页媒体编号旧底图总号底图总号签名编制(日期)审核(日期) 标准化(日期)批准(日期)日期标记处数更改文件号签 名日 期格式(G3)盐盐城城工工学学院院注注塑塑工工艺艺卡卡片片产品型号零部件图号产品名称诺基亚手机外壳 零部件名称共1页第1页材 料 名 称ABS材 料 牌 号材 料 颜 色灰黑每台件数2零 件 净 重13.2 g零 件 毛 重15g消 耗 定 额 8 g/件设 备XS-ZY-125注射成形工艺料筒温度第一段150170165注射成形时间S闭 模2020模具编 号YGJZ-07第二段165180170注 射105012型腔数量2第三段170200180保 压353附 件第四段180200冷 却205030第五段200启 模2020喷 嘴170180180总时间85总 高245压力MPa注 射60100100模 温508050顶 出 高26保 压209070螺杆类型B嵌件图 号名 称数量螺杆转速r/min3060加 料 刻 度脱模剂零件成形后处理工 序 内 容工 艺 装 备工时准终单件热处理方式1 料筒中加入原料;以85烘干1.52小时色差,按封样件媒体编号加热温度保温温度2装模、调机表面不允许有缺料旧底图总号原料干燥处理使用设备注塑机加热时间盛料高度保温时间3料筒实际温度达到设定值后开始注塑;尺寸底图总号翻料时间160s冷却方式水冷产品冷却至室温按质量要求检验,首次连续10件合格后进入正式批量生产。干燥温度70804清理毛刺,不得划伤产品外表面。试装签名干燥时间24h编制(日期)审核(日期) 会签(日期)批准(日期)日期标记处数更改文件号签 名日 期格式(G9)注塑工艺流程图注塑机加材料: ABS颜色:深红形状:颗粒状。质量:13克熔点: 160175160料筒后段加 热180料筒中段加 热200料筒前段加 热注射速度70mg/s喷 嘴温度260 模 具充模时间:12s压力: 120MPa压实保压:35s保压力: 80MPa冷却时间: 30s介质:水 出 模塑 件去毛刺包装材 料 浇口凝料质量粉碎成颗粒状用水清洗浇口凝料质量用烘干机烘干 模具装配工艺过程卡装配步骤 装 配 说 明精修定模1. 定模前工序的完成情况:外形粗加工,每边留余量1mm,两平面磨保证平行度,并留有修边余量;2. 型腔用铣床加工或用电火花加工,深度按要求留加工余量抛光;3. 用油石修光型腔表面;4. 控制型腔深度磨分型面。精修动模板型槽、型孔、型芯1. 按划线方法加工动模板型槽、型孔;2. 按图样将预加工的动模型芯,精修成型,钻铰顶件孔。配镗导柱、导套孔(采用标准模架的已完成)1. 用工艺孔或定模、动模定位,将定模、动模板叠合在一起,使分型面紧密贴合,然后夹紧,镗削导柱、导套孔;2. 锪导套、导柱孔的台肩。复钻各螺孔及推件孔1. 定模与定模固定板叠合在一起夹紧,复钻螺孔;2. 动模固定板、垫板、支承板和动模板叠合夹紧,复钻螺孔。动模板与定模板之间的配合将动模板上的型芯与定模板上的型腔配合,并保证两板之间配合紧密。压入导柱和导套1. 将导套压入定模板; 2. 将导柱压入动模板;3. 检查导柱、导套配合的松紧程度磨安装基面1. 将定模板上基面磨平 2. 将动模板下基面磨平复钻顶杆固定板上的推杆空通过动定板及型芯,引钻顶杆固定板上的推杆孔,卸下后再复钻顶杆固定板各孔及沉头孔。将浇口套压入定模板 用压力机将浇口套压入定模板。装好定模部分定模板及定模固定板复钻螺孔、销孔后,拧入螺钉紧固。装好动模部分将动模固定板、垫板、支承板、动模板复钻后,拧入螺钉固紧。修正推杆及复位杆1. 将动模部分全部装配后,使支承板底面和推板紧贴于固定板上,自推板表面测出推杆、复位杆及顶杆长度;2. 修磨长度后,进行装配,并检查它们的灵活性。试模与调整各部分装配完后,进行试模、检查制品,验证模具质量状况,发现问题予以调整。Resin infusion between double flexible tooling: prototype developmentJ.R. Thagard, O.I. Okoli*, Z. Liang, H.-P. Wang, C. ZhangDepartment of Industrial Engineering, Florida A and M University-Florida State University College of Engineering, 2525 Pottsdamer Street,Tallahassee, FL 32310-6046, USAReceived 1 September 2002; revised 10 April 2003; accepted 21 May 2003AbstractThe Resin Infusion between Double Flexible Tooling (RIDFT) technique is a novel two-stage process, which incorporates resin infusionand wetting with vacuum forming. The flow front of the infused resin is two-dimensional and avoids flow complexities prevalent in the three-dimensional flow seen in other liquid composite molding techniques. It employs a one-sided mold, which provides obvious cost benefitswhen compared with resin transfer molding. On-going prototype development of the RIDFT process has yielded positive results. Compositelaminates with good surface quality, micro structural characteristics, and mechanical properties have been repeatedly produced with costsavings of 24% when compared with SCRIMP. This paper describes the RIDFT process, outlining its merits and presenting its challenges,whilst identifying potential benefits to industry. Current work being undertaken include the refining of production parameters, theconstruction of a larger prototype to examine the full extent of its suitability for the manufacture of large composite components and theincorporation of the UV curing technique to reduce the cycle time in the manufacture of large structures.Keywords: E. Forming; Infusion1. IntroductionThe transport sector continues to provide significantgrowth opportunities for polymer composites with advan-tages of weight savings, corrosion resistance and functionalintegration 1. However, the available production processeshave limited the utilization of composite materials in themass production sector. Many of the current processes donot readily lend themselves to mass production due to longcycle times and high emissions of harmful volatile organiccompounds (VOCs). Nevertheless, liquid composite mold-ing (LCM) techniques are technologically promising.Examples include resin transfer molding (RTM), flexibleresin transfer molding (FRTM), and resin infusion byflexible tooling (RIFT). These closed molding techniquesalso have the advantage of reducing emissions of VOCs by90% 2.Cost is a primary consideration in the development ofcomposite production processes. The marine industrymanufacturers have stuck to the validated and cheaperopen molding technique of hand lay-up, despite the USEnvironmental Protection Agency (EPA) regulations. Thedevelopment of the Resin Infusion between Double FlexibleTooling (RIDFT) technique further advances resin infusiontechnology, reducing the higher costs of closed moldmethods.2. Liquid composite molding processes2.1. Resin transfer molding (RTM)Traditionally, RTM has been used as the choice for themanufacturing of composite parts. RTM offers manyadvantages over other processes for the manufacturing offiber-reinforced thermosetting polymer composites. Theseadvantages include improved component thickness toler-ances, better surface finish, and reduced emissions ofvolatiles. One of the critical issues for the success of RTMprocesses is the proper understanding and prediction of resinflow during mold filling. Considerable work has been donein this area and some models and simulation tools areavailable 37. Nonetheless, the analysis of resin flow forparts with complex geometry and permeability variationsstill present difficulties. However, preform preparation andComposites: Part A 34 (2003) 803811*Corresponding author. Tel.: 1-850410-6352; fax: 1-850-410-6342.E-mail address: (O.I. Okoli).tooling costs can be prohibitively large for parts of morethan a few meters in dimension, particularly for one-off orsmall production runs when compared with the hand lay-upprocess 8. Fig. 1 shows a schematic of the RTM process.Further development of LCM processes have been targetedat reducing complexity and associated costs. Some of thesewill be discussed in the following sections.2.2. Resin infusion under flexible tooling (RIFT)Resin Infusion under Flexible Tooling (RIFT) is arelatively new process, introduced in the 1980s. A versionof RIFT dates back to the 1950s when it was used in theproduction of boat hulls. Fig. 2 shows the RIFT processdeveloped by Ciba and Geigy 9. A flexible female splashtool was the basis behind this process. During the 1980s,the use of a rubber bag as the flexible tool was investigatedand several patents were filed 8. The process wasrediscovered during the 1990s and has found applicationparticularly in the marine and automotive industries. Aversion of RIFT is used to strengthen offshore structureswith carbon fiber 8.In the RIFT process, fibers are first placed onto afemale mold that is typically coated with a release agent.Next, a flexible tooling layer is placed over the fiber andsealed around the edges vacuum tight. The fiber is thenvacuum infused between the mold and flexible tooling layer,thereby forming the shape of the part.RIFT retains many of the environmental advantages ofRTM, but at a much lower tooling cost, since half of theconventional rigid closed mold is replaced by a bag.Adapting existing contact molds for the RIFT processmay be feasible. This becomes very important in massproduction, as there isa potential for millions ofdollars to be saved from reduced tooling and manufac-turing costs.RIFT has some disadvantages over the RTM process.RIFT offers limited direct control over the thickness or fibercontent of the final composite laminate in the RIFT process.These parameters depend on the compressibility andrelaxation of the reinforcement under pressure, andinteractions with bagging film breather and other ancillarymaterials 8.Compression studies of dry fiber assemblies have beensubject to much research 8,1015. Pearce and Summers-cales 10 noted that the response of a dry preform wasdynamic. Time dependent compression and relaxation wereobserved, and repeated loading and unloading of thereinforcement achieved higher compaction at a givenpressure. The compression of the reinforcement duringRIFT is further complicated by the arrival of the flowingresin. This provides lubrication for the fibers and may affectthe deformation of the laminate under the vacuum bag.Furthermore, the effective compressive force acting on thereinforcement is not constant during the process. Saunderset al. 15 investigated the compressibility of differentfabrics (plain weave, twill, satin, non-crimped stitch-bonded) and determined that the compressibility of a fabricdepended on its type. Twill weave fabrics were the mostdifficult to compress in the wet and dry states.Before the arrival of the resin at a given point, the drylaminate is subject to atmospheric pressure. As the resinflows past this point, the pressure in the resin rises, so thenew compression on the reinforcement reduces. Theprevailing is indicative of the possibility of flow-induceddefects with an increase in complexity of part geometry. Atheoretical and practical understanding of these compactionmechanisms is required in order to assess whether moldedlaminates can be produced with a consistent, reproducibleand predictable fiber content and quality. Any interactionbetween the laminate and the ancillary materials during theprocess must be quantified 8.Summerscales 9 showed that the RIFT processreduces worker contact with liquid resin while increasingcomponent mechanical properties and fiber content byreducing voidage compared to hand lay-up. Furthermore,RIFT offers the potential for reduced tooling costs wherematched tooling (RTM or compression molding) iscurrently used 9.RIFT has many advantages over the traditional RTMprocess. These advantages include 11:Fig. 1. Schematic of the RTM process.Fig. 2. Schematic of the CibaGeigy RIFT method 4.J.R. Thagard et al. / Composites: Part A 34 (2003) 803811804 Use of existing hand lay-up molds with only minoralterations Low investment in additional equipment Reduced void content (as compared to 3D infusiontechniques) Ability to produce very large componentsNevertheless, part thickness consistency is a problemwith RIFT.2.3. Flexible resin transfer molding (FRTM)A similar process to RIFT is FRTM. FRTM is aninnovative composite manufacturing process, developedbased on detailed cost analysis, which is intended to be costeffective by design. FRTM is a hybrid process, whichcombines the technical characteristics and respectivefavorable economics of diaphragm forming and RTM.Separate sheets of dry fiber and solid resin are placedbetween elastomeric diaphragms and heated so that the resinliquefies. The fiber and resin are then compacted by drawinga vacuum between the diaphragms, and formed to shape bydrawing the diaphragm assembly over hard tooling 16.Fig. 3 shows a schematic of the FRTM process. The FRTMprocess was optimized to produce high quality parts withlow thickness variation, low void content and high fibervolume.Finally, the cost effectiveness of the FRTM process wasverified through a mini-production run 16. FRTM wasdesigned and developed to allow for parts to be madecheaper and faster than traditional methods such as RTM. Aneed for new cost effective means of production is often astarting point for the development of a new process such asFRTM from the classical RTM process. The comparativeadvantages and disadvantages of the vacuum formingversion of FRTM and several other currently availableprocesses such as RIFT are shown in Table 1.Conceptually, FRTM is a hybrid process, whichcombines favorable characteristics of RTM and diaphragmforming. Like RTM, FRTM uses the lowest cost constitutiveraw materials possible (dry fiber and resin), but eliminatesthe labor intensity typically associated with preparation ofthe three-dimensional fibrous preform used in RTM. InFRTM, fabric is formed in a one step double diaphragmforming process. This reduces labor intensity and decreasescycle time. FRTM can also reduce the tooling coststypically associated with RTM because no heavy matchedtooling is required 16.The second advantage of the FRTM process arises fromthe fact that the diaphragm system is, by nature, deformable,and provides a low cost reconfigurable tooling surface.Through the use of various forming methods such asvacuum forming and matched mold stamping, it is possibleto reduce the tooling costs associated with dedicatedmatched tooling in the traditional RTM process. Reducedtooling costs can come from lighter weight tooling, one-sided tools, or through the economic advantages of aflexible, reconfigurable forming mechanism. FRTM alsoreduces or eliminates tool cleaning, which is typically labor-intensive 16.The third advantage of the FRTM process is therepeatability of the impregnation process, which is quickerand more easily controlled. This results from conducting theresin impregnation along the part thickness direction, whichis relatively shorter than the other two in-plane directions.Additionally, by impregnating in the flat, placement ofsprues and vents is independent of final part geometry. Thetraditional costly experimentation necessary to optimizeprocessing variables and redesign tooling to achieve void-free uniform wet-out is eliminated, and development timefor new parts is greatly reduced since new learning is notrequired. Given that the resin begins in a position very closeto its final location, the process is inherently quicker andmore controllable than the transverse impregnation methodtypically associated with RTM 16.Table 1 shows the disadvantages of the FRTM process.Many forming processes have limitations in the geometriesthat can be formed. Undercuts cannot be produced with thevacuum forming mechanism. The control of thicknessvariation and achievable fiber volumes with the FRTMFig. 3. Schematic of the FRTM process 16.Table 1Process comparison chart 16ProcessAdvantagesDisadvantagesHandlay-upCan producecomplex shapesExpensive rawmaterialWell understoodLabor intensiveNot cost effectiveat high volumesRTMUse of low costraw materialLabor intensiveperform preparationProduce complex/highly integrated partsHigh tooling cost3Dflow difficult to controlFormingLabor costis reducedExpensive raw materialOne step bulkdeformationComplexity limitedto formable shapesFRTMand RIFTUses low costraw materialsComplexity limited toformable shapesLess labor content,bulk deformationThickness variationpotential2D impregnationeasier to controlLimits in achievablefiber contentJ.R. Thagard et al. / Composites: Part A 34 (2003) 803811805process is potentially limited. Control of thickness variationis optimized using close loop process control and throughjudicious selection of resins, whose properties were bestsuited for the unique requirements of the FRTM process.Fiber volume is closely related to the compaction pressureapplied to the fabric during cure,therefore, varies dependingon the forming method employed 16.2.4. Vacuum bag molding (VBM) and Seaman compositesresin infusion molding process (SCRIMP)The VBM technique is a closed mold technique and acost-effective alternative to the open mold processes.SCRIMP is a popular version of the VBM. In this process,a network, which consists of grooves or channels, is used todistribute the resin and reduce the flow resistance and fillingtime. The resin fills the grooves or channels first by vacuumpressure, and then the resin infuses into the fiber perform. InVBM, a one-sided rigid mold and a bag are used to form amold cavity 17.The VBM process can be divided into five steps. First, inpre-molding, the mold surface is cleaned, and then a moldrelease agent and a gel coat are sprayed on the surface. Next,during reinforcement loading, dry fiber mats are mountedinto the mold and covered by a flexible bag. The cavity issealed by vacuum tapes or other techniques, and channelnetworks or grooves form. In the third step, the cavity of themold is vacuumed and resin infuses into the fiber mats bythe vacuum force. After the cavity is filled with resin, resinbegins curing and solidifying into the composite part, calledthe resin-curing step. Finally, the cured composite is takenout of the mold, and the next cycle begins 17.2.5. Resin infusion between double flexible tooling (RIDFT)RIDFT intends to solve problems associated with otherLCM techniques. These problems include achievable fibervolume, part thickness consistency, manufacturing cycletime and process complexity. Although not all problemshave been currently addressed, it was the intent of thisresearch to use RIDFT to overcome the shortcomings andlimitations of other LCM techniques. Fig. 4 shows aschematic of the RIDFT process.Unlike the FRTM process, the RIDFT process does notuse dry solid sheets of resin, but currently uses a lowviscosity room temperature curing thermoset. The roomtemperature thermosets can vary hardener content to allowfor partial curing within 10 minutes of completed infusion,which allows for the partially cured part to be removed.Furthermore, the low viscosity resin may provide betterlubrication for reinforcing fibers, thus enhancing processformability.An advantage of the RIDFT process is that the flow ofresin is two-dimensional eliminating the complexity of thethree-dimensional flow front experienced with RTM 18.Other advantages of RIDFT include lower tooling costswhen compared with RTM, reduced production times, theincorporation of UV curing techniques, and the potential forattaining higher fiber contents. The inherent limitationsrestrict the part geometries to formable shapes.An advantage of RIDFT over RIFT is in the use of asecond flexible tooling that reduces cleanup and manufac-turing preparatory work. With RIDFT, resin does notcontact the mold surface and eliminates the need to preparethe mold before each cycle. In addition to reducing amanufacturing step, this does not lend itself to tool wearexperienced from continuous use as seen in the RTMprocess.For the RIDFT process, porous aluminum mold technol-ogy can be utilized. International Mold Steel 19constructed the porous mold seen in Fig. 5 for use withRIDFT. The Swiss manufacturer, Portec, introduced aunique patented material with a trade name METAPOR19. This commercially available product consists ofaluminum granules encased by epoxy resin and compressedunder high pressure. The combination of materials and themanufacturing process results in a cast block having theappearance and feel of solid metal, while being completelymicro-porous and permeable to air 19.Fig. 5. International mold steel porous mold (METAPOR).Fig. 4. Schematic of the RIDFT process.J.R. Thagard et al. / Composites: Part A 34 (2003) 803811806The METAPOR technology allows the RIDFT process toovercome potential problems. The vacuum driven formingstep in the RIDFT process is the key to forming part shapes.Micro-pores in the mold allows for vacuum to be pulledfrom all areas within the mold, which allows part intricacyto be increased, as problems associated with air pockets areno longer an issue.Fig. 6 shows that when using a non-porous mold thevacuum cannot form the flexible layer into the V-shapedgroove. Once the vacuum is evacuated from between thenon-porous mold and the silicone sheet, the forming can nolonger occur. However, with the porous mold surface the airis evacuated from all areas on the mold surface and allowsfor the silicone sheet to form into the V-shaped groove. Dueto low forming pressures and the lack of contact between theresin and the mold surface, RIDFT mold cost is significantlyless than with other liquid molding processes.3. Modeling of RIDFT formingUnderstanding the forming mechanics and the predictionof the formability of desired geometries within the RIDFTprocess necessitates the creation of a simulation model. TheRIDFT process is dynamic and simulation software must bechosen that can account for various materials used withinthe process, interactions of these materials and the forceapplied during forming. The current effort will investigatethe PAM-FORM software since it is a general-purpose finiteelement package for the industrial virtual manufacturing ofnon-metallic sheet forming.3.1. Materials propertyWithin the PAM-FORM simulation model of the RIDFTprocess, the following three distinct material types wereused and defined 20. Material type 121 for the flexible silicone sheets Material type 140 for the fiber reinforcement Material type 100 for tooling and vacuum chamber3.1.1. Material type 121 for the flexible silicone sheetsThe material model is characterized as nonlinear thermo-visco-elastic for shell elements (GSell Model). Inputs forthis material model include initial thickness, Youngsmodulus, Poissons ratio, and mass density. The governingequation used within the PAM-FORM software is given inEq. (1) 20.s k1 2 exp2vEexphE2Em1where,kscaling factor or material consistency in softwaremodel1 2 exp2vE visco-elastic term for low E (strain)exphE2 strain hardening for high E (strain)Emstrain rate sensibilitymstrain rate hardening exphstrain hardening coefficientEmodulus of the wetted fabrics3.1.2. Material type 140 for the fiber reinforcementThe material model is characterized as thermo-visco-elastic matrix with elastic fibers for shell elements. Inputsfor this material model include the following 20: Material density Locking angle from a picture frame test Youngs Modulus in 0 and 908*Stress vs. strain curves in 0 and 908 at different strainrates Shear modulus using picture frame test or stress vs. strainin 458*Stress vs. strain curves in 458 at different strain rates*Perform picture frame test to calculate shear modulusG Effective viscosity using picture frame testF SmdEdt2whereSfabric surface areadtshear strain ratemeffective viscosity Bending factor3.1.3. Material type 100 for tooling and vacuum chamberThe material model is characterized as null material forshell elements. The null material for shells is a convenientand economic tool for the modeling of contact surfaceswhen internal forces and deformations of these surfaces arenot of interest 21.Fig. 6. Porous and non-porous mold surfaces for use with RIDFT.J.R. Thagard et al. / Composites: Part A 34 (2003) 8038118073.2. Defining contact interfacesContact interfaces within the PAM-FORM software areused to define the interactions that occur within thesimulation model. For the RIDFT simulation model thereare four contact interfaces that occur and are listed asfollows: Fiber layer-to-fiber layer interface Fiber layer-to-silicone interface Silicone-to-silicone interface Silicone-to-tooling interfaceThese interfaces can be characterized within the model-ing software by use of two primary contact interface typesand two secondary contact interface types. The interfacetypes include the following 21: Type 16 Lagrangian contact-silicone-to-tooling interface Type 15 Contact blank/tool-silicone-to-tooling interface Type 33 Surface/surface-fiber-to-fiber, fiber-to-silicone,silicone-to-silicone interfaces Type 13 Bilateral contact-fiber-to-fiber, fiber-to-silicone,silicone-to-silicone interfaces3.2.1. Type 16 Lagrangian contact for flexible silicone sheetto tooling surface interfaceThe contact treatment used for this interface is the bucketsearch. The bucket search method is used to determine whencontact between the flexible silicone sheet and the toolingsurface has occurred. Fig. 7 shows the bucket searchapproach. If the silicone passes the tool, it is displaced backaway from the tool equal to the distance the tool wasviolated. This enforcement keeps the silicone from passingthe tool within the simulation model.3.2.2. Type 15 Contact blank/tool for flexible silicone sheetto tooling surface interfaceCritical input parameters for this contact interfaceinclude friction, penalty, search frequency and contactdamping. The search frequency refers to how often themodel searches for the contact between the flexible siliconesheet and the tooling surface.The contact treatment used for this interface is abucketsearchasshowninFig.7.Thecontactenforcement used for this interface is the penalty contact.The contact enforcement addresses how, if the siliconepasses the tool surface, the silicone is moved back awayfrom the tool. This may occur if the movement of theflexible silicone sheet between time steps and searchfrequency allows it to travel past the tool. The penaltycontact works by assessing a penalty value within thecontact interface. This penalty value is used to apply aforce normal to the tool, to force the silicone back fromthe tool surface. Eq. (3) shows the contact penalty, whileFig. 8 shows the contact penalty.F pd3whereppenalty valueddistance silicone has violated the tool3.2.3. Type 33 surface/surface and type 13 bilateral contactThese contact interface models are used to describe theinterface between the fiber-to-fiber contact, fiber-to-siliconecontact and silicone-to-silicone contact surfaces. Criticalinput parameters for these contact interfaces includefriction, thickness, penalty, search frequency and stiffnessdamping.The contact treatment used for these interfaces is theconnectivity search. The connectivity search method isused to determine when contact between fiber-to-fiber,fiber-to-siliconeandsilicone-to-siliconesurfaceshasoccurred. This search is performed according to thesearch frequency,calculating whether nodes oftheflexible silicone sheet have contacted the tool surface.According to the connectivity search, contact will happenwhen the node is half the thickness of the silicone awayfrom the tool surface. Fig. 9 shows the connectivitysearch. The contact enforcement used for these interfacesis the penalty contact.Fig. 7. Bucket search approach 20.Fig. 8. Contact penalty 20.J.R. Thagard et al. / Composites: Part A 34 (2003) 8038118084. Prototype development4.1. Current prototypeThe initial RIDFT prototype allows for part constructionwith dimensions of 1 foot (0.3 m width) 2 feet (0.6 mlength) 1 foot (0.3 m depth). The process is as describedin Fig. 4. The machine is constructed using a mild steelframe and mild steel walls for the vacuum chamber withsealing frames constructed from aluminum.The initial parts manufactured using the RIDFT processare missile quarter panels. The mold used is shown in Fig. 5.The finished panels are shown in Fig. 10.4.2. Micro-structural evaluation and mechanical propertiesGood wetting and interfacial bonding are indicative ofthe mechanical properties of the resulting compositecomponent 22. Fig. 11 is an environmental scanningelectron microscope (ESEM) image of a RIDFT component.It shows that the RIDFT process, as with other proven LCMtechniques, allows for proper resin penetration of the fiberswith a resulting enhancement of the fibermatrix interfacialbond. In Fig. 12, fragmented matrix parts can be seenbetween the knitted yarns. This indicates that properpenetration of the resin occurred during the RIDFT process.Furthermore, in Fig. 13, a bunch of fibers can be seen heldtogether by the damaged matrix. This is indicative of goodfibermatrix bonding.Tensile tests were performed according to ASTM D3039 23 to ascertain the strengths of the RIDFTcomponents. The strain measurements were made usinganextensometer.Thespecimendimensionswere200 mm 25 mm. Aluminum end tabs 1 mm thick and50 mm long were locally bonded onto the specimenswith Loctite Extra Time Epoxy, leaving a gauge sectionof 100 mm. A bi-directional E-glass fabric and a vinylester matrix were used. The resulting tensile strength was304 MPa, with a Youngs modulus of 19 GPa. The fibervolume fraction was 51%.Fig. 9. Connectivity search approach 20.Fig. 10. Component panels manufactured with RIDFT.Fig. 11. Microstructure of the failed surface of a component made by theRIDFT process showing good wetting of fibers.Fig. 12. Microstructure of the failed surface of a component made by theRIDFT process showing resin penetration of the knitted yarns indicatinggood wetting of the fibers.J.R. Thagard et al. / Composites: Part A 34 (2003) 8038118095. Economic evaluationIn order to ascertain the viability of the RIDFT processfor the manufacture of component parts, a cost comparisonwas made with SCRIMP. The comparison was based on thepart geometry shown in Fig. 14 and a production quantity of250 parts per year. The labor rates were estimated at $14.25per hour (direct) and $ 21.66 per hour (overhead). Thecomponent materials were glass fiber and polyester resin.The estimated fiber content was 50% by volume.The results of the cost analysis between the RIDFTprocess and SCRIMP are shown in Table 2. As can be seen,in all the categories except the hardware (equipment) cost,the RIDFT process has a cost advantage, yielding in anoverall advantage of 24%. Moreover, due to economy ofscale, an increase in production quantities from theprojected 250 parts per year will reduce the 16%disadvantage. A commercial software the CFA ProductionCost Estimator was used in the analysis.6. Ongoing enhancements6.1. Large machine constructionThe current RIDFT prototype has been successful inproducing flat panels and curved panels as shown inFig. 10. Although the ability to produce parts on a smallscale shows promise for the RIDFT process, its successand marketability will depend its ability to manufacturelarge-scale components. This has driven the need for theconstruction of a larger RIDFT machine that is capableof manufacturing parts with dimensions of 5 feet (1.5 mwidth) 10 feet (3 m length) 1 foot (0.3 m depth).The manufacturing of a larger RIDFT machine iscurrently in process. The larger machine has overalldimensions of 10 feet (3 m width) 15 feet (4.6 mlength) 4 feet (1.2 m height). The construction of themain vacuum chamber is already complete.It is widely recognized 24 that the ease with which acomposite can be shaped into a given geometry stronglydepends on the architecture of the reinforcing fiber.Formability assessment studies are ongoing to evaluate thedifferent types of fabrics that are suited to the RIDFTprocess. This study is imperative to avoid associatedproduction problems such as wrinkling of the fibers.6.2. Incorporation Of ultraviolet (UV) curingUV curing will provide several important advantageswhen combined with the RIDFT process. The resin onlycures with the presence of intense UV light. This allows forcomplete forming without the concern of gel times as withmost vinyl ester resins. Once the shape has been formed, theUV light can then be applied and the part quickly cured.This is facilitated by the use of silicone sheets as the flexibletooling layer, which allow for the transmission of UV lightthrough the tooling surface. This results in the reduction ofprocess cycle times since UV curing provides for acceler-ated curing times. The shortened curing times is of obviousbenefit to industry, especially in the mass production sector.Fig. 13. Microstructure showing failed fibers held together by the damagedmatrix, indicating good fiber-matrix bond
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。