说明书.doc

前端齿轮罩盖工艺工装设计【镗φ95H8孔】【精铣上端面】【说明书+CAD】

收藏

压缩包内文档预览:(预览前20页/共46页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:78025104    类型:共享资源    大小:10.34MB    格式:ZIP    上传时间:2020-05-08 上传人:柒哥 IP属地:湖南
50
积分
关 键 词:
镗φ95H8孔 精铣上端面 说明书+CAD 前端 齿轮 工艺 工装 设计 95 H8 精铣上 端面 说明书 CAD
资源描述:

购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载可得到资源目录里的所有文件。。。【注】:dwg后缀为CAD图纸,doc,docx为WORD文档,原稿无水印,可编辑。。。具体请见文件预览,有不明白之处,可咨询QQ:12401814

内容简介:
无锡太湖学院信 机系 机械工程及自动化 专业毕 业 设 计论 文 任 务 书一、题目及专题:1、题目前端齿轮罩盖工艺工装设计 2、专题 二、课题来源及选题依据 课题来源为无锡某机械有限公司。该课题主要是为了培养学生开发、设计和创新机械产品的能力,要求学生能够结合常规机床与零件加工工艺,针对实际使用过程中存在的金属加工中所需要的三维造型、机床的驱动及工件夹紧问题,综合所学的零件三维造型、机械理论设计与方法、机械加工工艺及装备等知识,对零件的机械加工工艺路线进行编制、工装夹具进行改进设计,从而实现金属加工机床切削加工所需要工装的半自动控制。在设计专用夹具装置时,在满足产品工作要求的情况下,应尽可能多的采用标准件,提高其互换性要求,以减少产品的设计生产成本。 三、本设计(论文或其他)应达到的要求:1、完成前段齿轮罩盖毛坯图; 2、完成前段齿轮罩盖零件图; 3、完成机械加工工艺过程卡; 5、完成夹具设计装配图; 6、完成夹具设计零件图; 7、完成课程设计说明书; 四、接受任务学生: 班 姓名 五、开始及完成日期:自2012年11月12日 至2013年5月25日六、设计(论文)指导(或顾问):指导教师签名 签名 签名教研室主任学科组组长研究所所长签名 系主任 签名2012年11月12日编号无锡太湖学院毕业设计(论文)相关资料题目: 前端齿轮罩盖工艺工装设计 信机 系 机械工程及自动化专业学 号: 0923805学生姓名: 范子星 指导教师: 鲍虹苏 (职称:高工) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 前端齿轮罩盖工艺工装设计 信机 系 机械工程及自动化 专业学 号: 0923805 学生姓名: 范子星 指导教师: 鲍虹苏 (职称:高工 ) (职称: )2012年11月25日 课题来源:生产实践需求(1)课题科学意义前端齿轮罩盖对防止机器工作环境中的杂物进入到机器里对其中机构的保护非常重要,比如在一个杂志很多的环境下工作,我们的齿轮如果没有罩盖的保护,会吸上很多杂物,齿轮就无法正常运转,从而影响我们的工业生产。另外,特别重要的是:在机械运转的过程中,如果有零件飞出或出现异常,会造成对工作者的安全威胁,罩盖可以很大程度上保护工作者!人们意识到这个问题,所以坚持不懈地,希望做出既能满足性能要求,又能达到外形尺寸美观的前端齿轮罩盖!本课题中外形要求精度中等,所以加工工序不多。(2)前端齿轮罩盖的研究状况及其发展前景 前端齿轮罩盖是薄壁类零件,而且外形不规则,在机床上加工最大的困难就是:设计出准确可装卸的夹具来夹紧定位,由于外形复杂,所以增加了夹具设计的难度。 但是随着我们液压系统的越来越多的使用,我们可以免去很多工作,可以利用其自动控制快速夹紧定位,不过存在的问题还是很多的,比如你这个工件在不同的机床上加工,它的受力也就不一样,同时也会影响夹具的。我们这里其中一个是在镗床上设计的夹具,采用的是比较通用的一面两銷定位夹紧的方法研究内容 熟悉前端齿轮罩盖是怎样性质的零件,它的作用和使用在哪些地方以及重要的性能指标; 熟练分析零件的三视图,并且能够比较准确地说出各部位存在的理由,有没有可以替代的其他零件,更利于生产; 熟练掌握各类机床的工作原理,及工作特点,需要注意哪些方面; 掌握铣床夹具,钻床夹具,镗床夹具等,知道各种夹具的用途和重要组成部分,会分析和设计并且能够对同类产品可以很快地分析; 能够熟练使用三维软件,包括UG和三维CAD,能够比较准确和快速地画出我们想要的产品,达到可以测绘的水准; 熟练使用各类图书手册,机械类许多手册内容较多,要学会有效地查阅,对各种知识网站资源的获取方法要比较了解,便于以后的学习工作。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案到工厂参观,我们这个零件必然要使用铣床和镗床,钻床,先到机床厂看师傅是怎样加工零件的,结合课本深入了解这三类机床的工作原理和工作特性,向工厂的老师傅请教一般零件的加工流程,再结合自己的零件,思考怎样安排一个合理的加工顺序是最有工作效率的。(2)研究方法 仔细研究零件的尺寸特性,根据尺寸计算出各种性能,并且进行比较,最终得出比较适宜的尺寸。 在老师的带领下对工厂进行参观学习,了解一个零件的加工流程,使自己在设计的时候能够有迹可循,有东西可以参照模仿。研究计划及预期成果研究计划:2012年10月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:前端齿轮罩盖的零件设计与分析2013年4月12日-2013年4月25日:前端齿轮罩盖的夹具设计与分析。2013年4月26日-2013年5月25日:毕业论文撰写和修改工作。预期成果:熟悉并且了解前端齿轮罩盖的工艺过程,每一步加工的切削三要素都要计算出来,能够联系实际应用,对零件的尺寸和工艺性能进行分析,得到进一步地改善,了解各类夹具的特点和使用方法,能够自己独立设计完成一个新的零件的夹具设计!特色或创新之处 使用CAD建立三维模型,比较直观地看清零件的组成部件,便于夹具的设计和计算。 计算每一步工序的切削速度,机床转速,进给量,还有切削深度,逻辑清晰,计算清楚明了,便于阅读。已具备的条件和尚需解决的问题 实验方案思路已经非常明确,借了几本机械工艺手册,零件夹具方面的书籍,便于查阅答疑。 对各类机床上的夹具还不够了解,需要联系实际,加强这方面的认识,对所学机械原理的很多公式需要加强记忆。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日 英语翻译Options for micro-holemakingAs in the macroscale-machining world, holemaking is one of the most if not the mostfrequently performed operations for micromachining. Many options exist for how those holes are created. Each has its advantages and limitations, depending on the required hole diameter and depth, workpiece material and equipment requirements. This article covers holemaking with through-coolant drills and those without coolant holes, plunge milling, microdrilling using sinker EDMs and laser drilling. Helpful Holes Getting coolant to the drill tip while the tool is cutting helps reduce the amount of heat at the tool/workpiece interface and evacuate chips regardless of hole diameter. But through-coolant capability is especially helpful when deep-hole microdrilling because the tools are delicate and prone to failure when experiencing recutting of chips, chip packing and too much exposure to carbides worst enemyheat.When applying flood coolant, the drill itself blocks access to the cutting action. “Somewhere about 3 to 5 diameters deep, the coolant has trouble getting down to the tip,” said Jeff Davis, vice president of engineering for Harvey Tool Co., Rowley, Mass. “It becomes wise to use a coolant-fed drill at that point.” To prevent those tiny coolant holes from becoming clogged with debris, Davis also recommends a 5m or finer coolant filter. Another recommendation is to machine a pilot, or guide, hole to prevent the tool from wandering on top of the workpiece and aid in producing a straight hole. When applying a pilot drill, its important to select one with an included angle on its point thats equal to or larger than the included angle on the through-coolant drill that follows. The pilot drills diameter should also be slightly larger. For example, if the pilot drill has a 120 included angle and a smaller diameter than a through-coolant drill with a 140 included angle, “then youre catching the coolant-fed drills corners and knocking those corners off,” Davis said, which damages the drill. Lubricious ChillTo further aid chip evacuation, Davis recommends applying an oil-based metalworking fluid instead of a waterbased coolant because oil provides greater lubricity. But if a shop prefers using coolant, the fluid should include EP (extreme pressure) additives to increase lubricity and minimize foaming. “If youve got a lot of foam,” Davis noted, “the chips arent being pulled out the way they are supposed to be.” He added that another way to enhance a tools slipperiness while extending its life is with a coating, such as titanium aluminum nitride. TiAlN has a high hardness and is an effective coating for reducing heats impact when drilling difficult-to-machine materials, like stainless steel. David Burton, general manager of Performance Micro Tool, Janesville, Wis., disagrees with the idea of coating microtools on the smaller end of the spectrum. “Coatings on tools below 0.020 typically have a effect on every machining aspect, from the quality of the initial cut to tool life,” he said. Thats because coatings are not thin enough and negatively alter the rake and relief angles when applied to tiny tools. However, work continues on the development of thinner coatings, and Burton indicated that Performance Micro Tool, which produces microendmills and microrouters and resells microdrills, is working on a project with others to create a submicron-thickness coating. “Were probably 6 months to 1 year from testing it in the market,” Burton said. The microdrills Performance offers are basically circuit-board drills, which are also effective for cutting metal. All the tools are without through-coolant capability. “I had a customer drill a 0.004-dia. hole in stainless steel, and he was amazed he could do it with a circuit-board drill,” Burton noted, adding that pecking and running at a high spindle speed increase the drills effectiveness. The requirements for how fast microtools should rotate depend on the type of CNC machines a shop uses and the tool diameter, with higher speeds needed as the diameter decreases. (Note: The equation for cutting speed is sfm = tool diameter 0.26 spindle speed.) Although relatively low, 5,000 rpm has been used successfully by Burtons customers. “We recommend that our customers find the highest rpm at the lowest possible vibrationthe sweet spot,” he said. In addition to minimizing vibration, a constant and adequate chip load is required to penetrate the workpiece while exerting low cutting forces and to allow the rake to remove the appropriate amount of material. If the drill takes too light of a chip load, the rake face wears quickly, becoming negative, and tool life suffers. This approach is often tempting when drilling with delicate tools. “If the customer decides he wants to baby the tool, he takes a lighter chip load,” Burton said, “and, typically, the cutting edge wears much quicker and creates a radius where the land of that radius is wider than the chip being cut. He ends up using it as a grinding tool, trying to bump material away.” For tools larger than 0.001, Burton considers a chip load under 0.0001 to be “babying.” If the drill doesnt snap, premature wear can result in abysmal tool life. Too much runout can also be destructive, but how much is debatable. Burton pointed out that Performance purposely designed a machine to have 0.0003 TIR to conduct in-house, worst-case milling scenarios, adding that the company is still able to mill a 0.004-wide slot “day in and day out.” He added: “You would think with 0.0003 runout and a chip load a third that, say, 0.0001 to 0.00015, the tool would break immediately because one flute would be taking the entire load and then the back end of the flute would be rubbing. When drilling, he indicated that up to 0.0003 TIR should be acceptable because once the drill is inside the hole, the cutting edges on the end of the drill continue cutting while the noncutting lands on the OD guide the tool in the same direction. Minimizing run out becomes more critical as the depth-to-diameter ratio increases. This is because the flutes are not able to absorb as much deflection as they become more engaged in the workpiece. Ultimately, too much runout causes the tool shank to orbit around the tools center while the tool tip is held steady, creating a stress point where the tool will eventually break. Taking a Plunge Although standard microdrills arent generally available below 0.002, microendmills that can be used to “plunge” a hole are. “When people want to drill smaller than that, they use our endmills and are pretty successful,” Burton said. However, the holes cant be very deep because the tools dont have long aspect, or depth-to-diameter, ratios. Therefore, a 0.001-dia. endmill might be able to only make a hole up to 0.020 deep whereas a drill of the same size can go deeper because its designed to place the load on its tip when drilling. This transfers the pressure into the shank, which absorbs it. Performance offers endmills as small as 5 microns (0.0002) but isnt keen on increasing that lines sales. “When people try to buy them, I very seriously try to talk them out of it because we dont like making them,” Burton said. Part of the problem with tools that small is the carbide grains not only need to be submicron in size but the size also needs to be consistent, in part because such a tool is comprised of fewer grains. “The 5-micron endmill probably has 10 grains holding the core together,” Burton noted. He added that he has seen carbide powder containing 0.2-micron grains, which is about half the size of whats commercially available, but it also contained grains measuring 0.5 and 0.6 microns. “It just doesnt help to have small grains if theyre not uniform.”MicrovaporizationElectrical discharge machining using a sinker EDM is another micro-holemaking option. Unlike , which create small holes for threading wire through the workpiece when wire EDMing, EDMs for producing microholes are considerably more sophisticated, accurate and, of course, expensive. For producing deep microholes, a tube is applied as the electrode. For EDMing smaller but shallower holes, a solid electrode wire, or rod, is needed. “We try to use tubes as much as possible,” said Jeff Kiszonas, EDM product manager for Makino Inc., Auburn Hills, Mich. “But at some point, nobody can make a tube below a certain diameter.” He added that some suppliers offer tubes down to 0.003 in diameter for making holes as small as 0.0038. The tubes flushing hole enables creating a hole with a high depth-to-diameter ratio and helps to evacuate debris from the bottom of the hole during machining. One such sinker EDM for producing holes as small as 0.00044 (11m) is Makinos Edge2 sinker EDM with fine-hole option. In Japan, the machine tool builder recently produced eight such holes in 2 minutes and 40 seconds through 0.0010-thick tungsten carbide at the hole locations. The electrode was a silver-tungsten rod 0.00020 smaller than the hole being produced, to account for spark activity in the gap. When producing holes of that size, the rod, while rotating, is dressed with a charged EDM wire. The fine-hole option includes a W-axis attachment, which holds a die that guides the electrode, as well as a middle guide that prevents the electrode from bending or wobbling as it spins. With the option, the machine is appropriate for drilling hole diameters less than 0.005. Another sinker EDM for micro-holemaking is the Mitsubishi VA10 with a fine-hole jig attachment to chuck and guide the fine wire applied to erode the material. “Its a standard EDM, but with that attachment fixed to the machine, we can do microhole drilling,” said Dennis Powderly, sinker EDM product manager for MC Machinery Systems Inc., Wood Dale, Ill. He added that the EDM is also able to create holes down to 0.0004 using a wire that rotates at up to 2,000 rpm. Turn to Tungsten EDMing is typically a slow process, and that holds true when it is used for microdrilling. “Its very slow, and the finer the details, the slower it is,” said , president and owner of Optimation Inc. The Midvale, Utah, company builds Profile 24 Piezo EDMs for micromachining and also performs microEDMing on a contract-machining basis. Optimation produces tungsten electrodes using a reverse-polarity process and machines and ring-laps them to as small as 10m in diameter with 0.000020 roundness. Applying a 10m-dia. electrode produces a hole about 10.5m to 11m in diameter, and blind-holes are possible with the companys EDM. The workpiece thickness for the smallest holes is up to 0.002, and the thickness can be up to 0.04 for 50m holes. Much of the companys contract work, which is provided at a shop rate of $100 per hour, involves microEDMing exotic metals, such as gold and platinum for X-ray apertures, stainless steel for optical applications and tantalum and tungsten for the electron-beam industry. Jorgensen said the process is also appropriate for EDMing partially electrically conductive materials, such as PCD.“The customer normally doesnt care too much about the cost,” he said. “Weve done parts where theres $20,000 in time and material involved, and you can put the whole job underneath a fingernail. We do everything under a microscope.”Light CuttingBesides carbide and tungsten, light is an appropriate “tool material” for micro-holemaking. Although most laser drilling is performed in the infrared spectrum, the SuperPulse technology from The Ex One Co., Irwin, Pa., uses a green laser beam, said Randy Gilmore, the companys director of laser technologies. Unlike the femtosecond variety, Super- Pulse is a nanosecond laser, and its green light operates at the 532-nanometer wavelength. The technology provides laser pulses of 4 to 5 nanoseconds in duration, and those pulses are sent in pairs with a delay of 50 to 100 nanoseconds between individual pulses. The benefits of this approach are twofold. “It greatly enhances material removal compared to other nanosecond lasers,” Gilmore said, “and greatly reduces the amount of thermal damage done to the workpiece material” because of the pulses short duration.In addition, the technology can produce negatively tapered holes, with a smaller entrance than exit diameter, to promote better fuel flow. To further enhance the technologys competitiveness, Ex One developed a patent-pending material that is injected into a hollow-body component to block the laser beam and prevent back-wall strikes after it creates the needed hole. After laser machining, the end user removes the material without leaving remnants. Depending on the application, mechanical drilling and plunge milling, EDMing and laser machining all have their place in the expanding micromachining universe. “People want more packed into smaller spaces,” said Makinos Kiszonas.微孔的加工方法正如宏观加工一样,在微观加工中孔的加工也许也是最常用的加工之一。孔的加工方法有很多种,每一种都有其优点和缺陷,这主要取决于孔的直径、深度、工件材料和设备要求。这篇文章主要介绍了内冷却钻头钻孔、无冷却钻孔、插铣、电火花以及激光加工微孔的几种方法。易于孔加工的操作无论孔有多大,在加工时将冷却液导入到刀尖,这都有助于排屑并能降低刀具和工件表面产生的摩擦热。尤其是在加工深细孔时,有无冷却对加工的影响更大,因为深细孔加工的刀具比较脆弱,再加上刀具对切屑的二次切削和切屑的堆积会积累大量的热,而热量是碳化物刀具的主要“天敌”,它会加快刀具的失效速度。当使用外冷却液时,刀具本身会阻止切削液进入切削加工位置。“也就是到3-5倍的直径深度后切削液就会很难流入到刀尖。” 副哈维工具有限公的副总工程师杰夫戴维斯说,“这时,就应该选用带有内冷的钻头。”为了防止这些冷却液通口被杂物堵塞,戴维斯还推荐在钻头上加一5m孔径或更加精密的冷却液滤清器。另外,他还推荐在加工孔时有必要在工件的上方先加工一个定心或导向孔,以防止刀具偏斜,并有助于保证所加工孔的垂直度。当选用定心钻时,应使选择的定心钻刀尖上的坡口角小于等于其后内冷钻的破口角。定心钻的直径还要稍微大一些。例如,如果定心钻的坡口角为120,内冷却钻头的坡口角为140,并且定心钻的直径小于内冷却钻的直径,“在加工时内冷却钻的拐角处会与定心孔干涉而容易脱落,”戴维斯说,“这将导致钻头损坏。”润滑及冷却为了更加有助于排屑,戴维斯推荐在金属加工中用油基金属切削液代替水基冷却液,因为油具有较高的润滑效果。但是如果车间更加青睐于使用水基冷却液,液体中应该包括EP(极压)添加剂,增加润滑和减少发泡。“如果产生很多泡沫,”戴维斯说,“切屑就不会按着预定的方式排出。”他还补充到,另一种提高润滑并且提高刀具寿命方法是刀具涂层,例如氮铝化钛(TiAlN)。TiAlN具有很高的硬度,当钻削像不锈钢这样的难加工金属材料时,带有TiAlN涂层的刀具能有效地减少热量冲击。威斯康星州简斯维尔微型刀具公司的总经理大卫伯顿,对微加工刀具的小批量涂层有不同的看法,他说:“对直径小于0.020英寸的刀具涂层,会对从刀具的加工质量到刀具的寿命等每一加工方面都产生消极影响”。因为小刀具的涂层不能够做得足够薄,这样涂层就会改变刀具的前角和后角,从而不利于加工。不过,更薄涂层的开发正在继续,伯顿表示,现在微型刀具公司除了生产销售微型铣刀、刨刀和微型钻头外,还在和其他公司合作致力于开发一种亚细微涂层。伯顿说:“我们计划这种图层刀具会在六个月到一年的时间内上市。”微型钻公司的产品主要是用于电路板加工的钻头,但也可用于有效的切削金属。所有的刀具都没带有内冷能力。“我有一个客户想要在不锈钢上面钻一个0.004英寸的孔,他当时非常惊讶这能用一把加工电路板的钻头完成。”伯顿还补充说,“采用啄式进给并选择高的主轴速度可以提高钻头的效率。”微加工刀具要使用多高的转速,这主要依赖于车间所使用的数控机床和刀具的直径,所需的转速随刀具直径的增加而加快(注:切削速度公式为 sfm=刀具直径0.26主轴转速)。虽然相对较低,但伯顿的客户也成功地应用过每分钟5000转的加工速度。伯顿说:“我们建议我们的用户找到一个震动最小的最高转速最佳加工速度。”为了减少震动,在用小的切削力通过刀具的前倾面去除适当的金属时,应使渗入到工件中的切削载荷连续而充足,如果钻头承受的切削载荷太轻,刀具前倾面的磨损速度就会加快,刀具变钝,从而影响刀具的使用寿命。这在加工细孔时应更加注意。“用户们常常使用较轻的切削载荷来延长刀具的使用寿命,”伯顿说, “这恰恰会加快切削刃的磨损,并在刀刃宽出切屑的位置形成圆弧,刀具会变得像磨削工具一样把材料强行除掉,只能成为报废刀。”伯顿认为,直径大于0.001英寸的刀具切削抗力小于0.0001时,切削力抗力就已经太小了,即使刀具不会断裂,过早的摩擦也会导致刀具寿命缩短。太多的跳动也可能是破坏性的,但是影响有多少还值得商榷。伯顿指出,公司打算设计一台具有0.0003英寸偏差的机器,用以建立室内最坏情况下的铣削场景,还将能够加工0.004英寸宽的槽,“这迟早会实现的”。他还补充:“你还可以试想一下0.0003英寸的跳动和只有正常水平三分之一的切削载荷,也就是说0.0001到0.00015,刀具将会立即破坏,因为刀具的一个排屑槽会承受所有的载荷,然后排屑槽的后面就会破坏。”他还指出,在钻孔时,小于0.0003英寸的偏差是可接受的,因为当钻头深入孔内时,钻头末端的切削刃在外圆柱非加工表面的引导下会继续切削。偏差的最小值随着深度和直径比值的增加而迅速减少,这是因为当钻头越深入工件,排屑槽的吸震能力越差。最后强烈的跳动导致刀柄绕着刀具的轴线转动,而刀尖还仍然保持稳定,从而产生使刀具最终
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:前端齿轮罩盖工艺工装设计【镗φ95H8孔】【精铣上端面】【说明书+CAD】
链接地址:https://www.renrendoc.com/p-78025104.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!