已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一轮章节复习反比例函数,郑州市回民中学,李丹,授课人:,一般地,函数(k是常数,k0)叫做反比例函数,什么是反比例函数?,回味无穷,高瞻远瞩,考点1:反比例函数的概念,等价形式:(k0),y=kx-1,xy=k,1.下列函数中,y与x成反比例关系的是()ABCD2.若是y关于x的反比例函数,则m=_,考点1:反比例函数的概念对应练习,4,3.已知反比例函数的图象经过点(a,b)则它的图象一定也经过点()A(-a,b)B(a,-b)C(-a,-b)D(0,0)4.已知y-2与x成反比例,当x=2时,y=6,则y与x间的函数关系式为;,考点1:反比例函数的概念对应练习,高瞻远瞩,考点1:反比例函数的概念,考点2:反比例函数的图象与性质,位置,增减性,位置,增减性,y=kx(k0),过原点的直线,双曲线,经过一三象限,y随x的增大而增大,位于一三象限,在每个象限内y随x的增大而减小,经过二四象限,位于二四象限,y随x的增大而减小,在每个象限内y随x的增大而增大,填表分析正比例函数和反比例函数的异同,回味无穷,既是轴对称图形又是中心对称图形,x,y,0,1,2,反比例函数图象的,对称性,渐近性,考点2:反比例函数的图象与性质,面积不变性,考点2:反比例函数的图象与性质,面积不变性,5.若是y关于x的反比例函数,且图象位于二、四象限,则k=_6.在同一坐标系中,函数和的图象大致是(A)ABCD,考点2:反比例函数的图象与性质对应练习,-2,7.已知反比例函数的图象上有两点A(,),B(,),且,则的值是()A正数B负数C非正数D不能确定,考点2:反比例函数的图象与性质对应练习,D,8.反比例函数在第一象限内的图象如图所示,点M是图象上一个点,MP垂直x轴于点P,如果MOP的面积为1,那么的值是;,考点2:反比例函数的图象与性质对应练习,2,高瞻远瞩,考点1:反比例函数的概念,考点2:反比例函数的图象与性质,考点3:反比例函数与一次函数的综合题目,待定系数法确定解析式的问题函数图象交点问题三角形面积问题比较大小的问题,9.已知正比例函数与反比例函数的图象相交于点A(m,1),则m,正比例函数解析式为;10.在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是()ABC同号D异号,考点3:反比例函数与一次函数对应练习,3,D,11.已知一次函数与反比例函数的图象相交于点A,B,(1)试求AOB的面积(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围,考点3:反比例函数与一次函数对应练习,C,12.(河南11年)已知点在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为.,的图象上,若点P关于y轴对称的点在反比例函数,-2,直击中考:,直击中考:,(河南11年)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.(1)=,=;(2)根据函数图象可知,当y1y2时,x的取值范围是;(3)过点A作ADx轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.,再见,本节复习课主要复习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年清洁能源环保产业园建设方案
- 2025年数字化交易支付安全方案推广实施方案
- 2025年物流配送行业无人驾驶运输方案实施方案
- 2025年智能保险智能保险理赔管理系统建设方案
- 2025年航空航天智能机场航空基础设施建设方案
- 2025年电子商务行业物流配送优化方案实施方案
- 2025年快递行业智能派送系统实施方案
- 2025年人才培养教育改革方案实施方案
- 2025年新能源汽车充电设施分布网络建设方案实施设计
- 2025年数字化教育资源管理系统建设方案
- 营养师二级论文 范文八
- 端子压接作业指导书
- 汉声数学绘本《数是怎么来的》
- 电子商务说课公开课一等奖市优质课赛课获奖课件
- 武汉城市简介PPT
- 口腔颌面颈部解剖课件
- 妇产科名词解释填空简答
- 浙江省教育科学规划课题活评审表
- LY/T 2787-2017国家储备林改培技术规程
- GB/T 8269-2006柠檬酸
- 宏基因组测序在临床中的应用mNGS
评论
0/150
提交评论